期刊论文详细信息
BMC Genetics
Wheat in the Mediterranean revisited – tetraploid wheat landraces assessed with elite bread wheat Single Nucleotide Polymorphism markers
Martin K Jones5  Leonor Penã-Chocarro1  Diane L Lister5  Fiona J Leigh2  Matti W Leino4  Jenny Hagenblad3  Hugo R Oliveira4 
[1] Escuela Española de Historia y Arqueología en Roma-CSIC, Via di Torre Argentina 18, Roma 00186, Italy;The John Bingham Laboratory – National Institute for Agricultural Botany (NIAB), Huntingdon Road, Cambridge CB3 0LE, UK;IFM Biology, Linköping University, Linköping SE-581 83, Sweden;Nordiska Museet, Swedish Museum of Cultural History, Julita SE-643 98, Sweden;McDonald Institute for Archaeological Research, University of Cambridge, Downing Street, Cambridge CB2 3ER, UK
关键词: Triticum turgidum;    Single Nucleotide Polymorphism;    Population structure;    Linkage disequilibrium;    Domestication;    Ascertainment bias;   
Others  :  866257
DOI  :  10.1186/1471-2156-15-54
 received in 2014-01-20, accepted in 2014-04-22,  发布年份 2014
PDF
【 摘 要 】

Background

Single Nucleotide Polymorphism (SNP) panels recently developed for the assessment of genetic diversity in wheat are primarily based on elite varieties, mostly those of bread wheat. The usefulness of such SNP panels for studying wheat evolution and domestication has not yet been fully explored and ascertainment bias issues can potentially affect their applicability when studying landraces and tetraploid ancestors of bread wheat. We here evaluate whether population structure and evolutionary history can be assessed in tetraploid landrace wheats using SNP markers previously developed for the analysis of elite cultivars of hexaploid wheat.

Results

We genotyped more than 100 tetraploid wheat landraces and wild emmer wheat accessions, some of which had previously been screened with SSR markers, for an existing SNP panel and obtained publically available genotypes for the same SNPs for hexaploid wheat varieties and landraces. Results showed that quantification of genetic diversity can be affected by ascertainment bias but that the effects of ascertainment bias can at least partly be alleviated by merging SNPs to haplotypes. Analyses of population structure and genetic differentiation show strong subdivision between the tetraploid wheat subspecies, except for durum and rivet that are not separable. A more detailed population structure of durum landraces could be obtained than with SSR markers. The results also suggest an emmer, rather than durum, ancestry of bread wheat and with gene flow from wild emmer.

Conclusions

SNP markers developed for elite cultivars show great potential for inferring population structure and can address evolutionary questions in landrace wheat. Issues of marker genome specificity and mapping need, however, to be addressed. Ascertainment bias does not seem to interfere with the ability of a SNP marker system developed for elite bread wheat accessions to detect population structure in other types of wheat.

【 授权许可】

   
2014 Oliveira et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140727050815162.pdf 1034KB PDF download
107KB Image download
107KB Image download
68KB Image download
44KB Image download
86KB Image download
34KB Image download
【 图 表 】

【 参考文献 】
  • [1]The US Department of Agriculture Foreign Agricultural Service http://www.pecad.fas.usda.gov/highlights/2010/11/global%20durum/ webcite
  • [2]Röder MS, Korzun V, Wendehake K, Plaschke J, Tixier MH, Leroy P, Ganal MW: A microsatellite map of wheat. Genetics 2009, 149(4):2007-2023.
  • [3]Akbari M, Wenzl P, Caig V, Carling J, Xia L, Yang S, Uszynski G, Mohler V, Lehmensiek A, Kuchel H, Hayden MJ, Howes N, Sharp P, Vaughan P, Rathmell B, Huttner E, Kilian A: Diversity arrays technology (DArT) for high-throughput profiling of the hexaploid wheat genome. Theor Appl Genet 2006, 113(8):1409-1420.
  • [4]Huang X, Zeller FJ, Hsam SL, Wenzel G, Mohler V: Chromosomal location of AFLP markers in common wheat utilizing nulli-tetrasomic stocks. Genome 2000, 43(2):298-305.
  • [5]Brenchley R, Spannagl M, Pfeifer M, Barker GL, D'Amore R, Allen AM, McKenzie N, Kramer M, Kerhornou A, Bolser D, Kay S, Waite D, Trick M, Bancroft I, Gu Y, Huo N, Luo MC, Sehgal S, Gill B, Kianian S, Anderson O, Kersey P, Dvorak J, McCombie WR, Hall A, Mayer KF, Edwards KJ, Bevan MW, Hall N: Analysis of the bread wheat genome using whole-genome shotgun sequencing. Nature 2012, 491(7426):705-710.
  • [6]Cavanagh CR, Chao S, Wang S, Huang BE, Stephen S, Kiani S, Forrest K, Saintenac C, Brown-Guedira GL, Akhunova A, See D, Bai G, Pumphrey M, Tomar L, Wong D, Kong S, Reynolds M, da Silva ML, Bockelman H, Talbert L, Anderson JA, Dreisigacker S, Baenziger S, Carter A, Korzun V, Morrell PL, Dubcovsky J, Morell MK, Sorrells ME, Hayden MJ, et al.: Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars. Proc Natl Acad Sci U S A 2013, 110(20):8057-8062.
  • [7]Akhunov ED, Nicolet C, Dvorak J: Single nucleotide polymorphism genotyping in polyploid wheat with IlluminaGoldenGate assay. Theor Appl Genet 2009, 119:507-517.
  • [8]Peng JH, Sun D, Nevo E: Domestication evolution, genetics and genomics in wheat. Mol Breed 2011, 28(3):281-301.
  • [9]Zohary D, Hopf M, Weiss E: Domestication of Plants in the Old World. 3rd edition. Oxford: Oxford University Press; 2012.
  • [10]Salamini F, Ozkan H, Brandolini A, Schäfer-Pregl R, Martin W: Genetics and geography of wild cereal domestication in the near east. Nat Rev Genet 2002, 3(6):429-441.
  • [11]Luo MC, You FM, Kawahara T, Waines JG, Dvorak J: The structure of wild and domesticated emmer wheat populations, gene flow between them, and the site of emmer domestication. Theor Appl Genet 2007, 114:947-959.
  • [12]Oliveira HR, Campana M, Jones H, Hunt H, Leigh F, Lister DL, Jones MK: Tetraploid wheat landraces in the Mediterranean basin: taxonomy, evolution and genetic diversity. PLoS ONE 2012, 7(5):e37063.
  • [13]Dvorak J, Deal KR, Luo MC, You FM, von Borstel K, Dehghani H: The origin of spelt and free-threshing hexaploid wheat. J Hered 2012, 103(3):426-441.
  • [14]Haudry A, Cenci A, Ravel C, Bataillon T, Brunel D, Poncet C, Hochu I, Poirier S, Santoni S, Glémin S, David J: Grinding up wheat: a massive loss of nucleotide diversity since domestication. Mol Biol Evol 2007, 24:1506-1517.
  • [15]Korzun V, Röder MS, Wendehake K, Pasqualone A, Lotti C, Ganal MW, Blanco A: Integration of dinucleotide microsatellites from hexaploid bread wheat into a genetic linkage map of durum wheat. Theor Appl Genet 1999, 98(8):1202-1207.
  • [16]Trebbi D, Maccaferri M, de Heer P, Sørensen A, Giuliani S, Salvi S, Sanguineti MC, Massi A, van der Vossen EA, Tuberosa R: High-throughput SNP discovery and genotyping in durum wheat (Triticum durum Desf.). Theor Appl Genet 2011, 123(4):555-569.
  • [17]Jauhar PP, Damania AB: Alien gene transfer and genetic enrichment of bread wheat. In Biodiversity and wheat improvement. Edited by Damania AB. New York: John Wiley & Sons; 1993:103-119.
  • [18]Moragues M, Moralejo M, Sorrels M, Royo C: Dispersal of durum wheat [Triticum turgidum L. ssp. turgidum convar. durum (Desf.) MacKey] landraces across the Mediterranean basin assessed by AFLPs and microsatellites. Genet Resour Crop Evol 2007, 54:1133-1144.
  • [19]Isaac AD, Muldoon M, Brown KA, Brown TA: Genetic analysis of wheat landraces enables the location of the first agricultural sites in Italy to be identified. JArch Sci 2010, 37:950-956.
  • [20]Nordborg M, Hu TT, Ishino Y, Jhaveri J, Toomajian C, Zheng H, Bakker E, Calabrese P, Gladstone J, Goyal R, Jakobsson M, Kim S, Morozov Y, Padhukasahasram B, Plagnol V, Rosenberg NA, Shah C, Wall JD, Wang J, Zhao K, Kalbfleisch T, Schulz V, Kreitman M, Bergelson J: The pattern of polymorphism in Arabidopsis thaliana. PLoS Biol 2005, 3(7):e196.
  • [21]Russell J, Dawson IK, Flavell AJ, Steffenson B, Weltzien E, Booth A, Ceccarelli S, Grando S, Waugh R: Analysis of >1000 single nucleotide polymorphisms in geographically matched samples of landrace and wild barley indicates secondary contact and chromosome-level differences in diversity around domestication genes. New Phytol 2011, 191(2):564-578.
  • [22]Albrechtsen A, Nielsen FC, Nielsen R: Ascertainment biases in SNP chips affect measures of population divergence. Mol Biol Evol 2010, 27(11):2534-2547.
  • [23]Hübner S, Günther T, Flavell A, Fridman E, Graner A, Korol A, Schmid KJ: Islands and streams: clusters and gene flow in wild barley populations from the Levant. Mol Ecol 2012, 21(5):1115-1129.
  • [24]Allen AM, Barker GL, Berry ST, Coghill JA, Gwilliam R, Kirby S, Robinson P, Brenchley RC, D'Amore R, McKenzie N, Waite D, Hall A, Bevan M, Hall N, Edwards KJ: Transcript-specific, single-nucleotide polymorphism discovery and linkage analysis in hexaploid bread wheat (Triticum aestivum L.). Plant Biotechnol J 2011, 9(9):1086-1099.
  • [25]Nei M: Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci U S A 1973, 70:3321-3323.
  • [26]Tajima F: Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 1989, 123(3):585-595.
  • [27]Cereals Database UK http://www.cerealsdb.uk.net/cerealgenomics/CerealsDB/indexNEW.php webcite
  • [28]Pritchard JK, Stephens M, Donnelly P: Inference of population structure using multilocus genotype data. Genetics 2000, 155:945-949.
  • [29]Evanno G, Regnaut S, Goudet J: Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 2005, 14:2611-2620.
  • [30]Jakobsson M, Rosenberg NA: CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 2007, 23:1801-1806.
  • [31]Rosenberg NA: Distruct: a program for the graphical display of population structure. Mol Ecol Notes 2004, 4:137-138.
  • [32]Conrad DF, Jakobsson M, Coop G, Wen X, Wall JD, Rosenberg NA, Pritchard JK: A worldwide survey of haplotype variation and linkage disequilibrium in the human genome. Nat Genet 2006, 38(11):1251-1260.
  • [33]Nielsen R: Estimation of population parameters and recombination rates from single nucleotide polymorphisms. Genetics 2000, 154(2):931-942.
  • [34]Peleg Z, Saranga Y, Suprunova T, Ronin Y, Röder MS, Kilian A, Korol AB, Fahima T: High-density genetic map of durum wheat x wild emmer wheat based on SSR and DArT markers. Theor Appl Genet 2008, 117(1):103-115.
  • [35]Würschum T, Langer SM, Longin CF, Korzun V, Akhunov E, Ebmeyer E, Schachschneider R, Schacht J, Kazman E, Reif JC: Population structure, genetic diversity and linkage disequilibrium in elite winter wheat assessed with SNP and SSR markers. Theor Appl Genet 2013, 126:1477-1486.
  • [36]Zhang D, Bai G, Zhu C, Yu J, Carver BF: Genetic diversity, population structure, and linkage disequilibrium in U.S. elite winter wheat. Plant Genome 2010, 3:117-127.
  • [37]Chao S, Dubcovsky J, Dvorak J, Luo MC, Baenziger SP, Matnyazov R, Clark DR, Talbert LE, Anderson JA, Dreisigacker S, Glover K, Chen J, Campbell K, Bruckner PL, Rudd JC, Haley S, Carver BF, Perry S, Sorrells ME, Akhunov ED: Population- and genome-specific patterns of linkage disequilibrium and SNP variation in spring and winter wheat (Triticum aestivum L.). BMC Genomics 2010, 11:727. BioMed Central Full Text
  • [38]Chen X, Min D, Yasir TA, Hu YG: Genetic diversity, population structure and linkage disequilibrium in elite Chinese winter wheat investigated with SSR markers. PLoS ONE 2012, 7(9):e44510.
  • [39]Maccaferri M, Sanguineti MC, Demontis A, El-Ahmed A, Garcia del Moral L, Maalouf F, Nachit M, Nserallah N, Ouabbou H, Rhouma S, Royo C, Villegas D, Tuberosa R: Association mapping in durum wheat grown across a broad range of water regimes. J Exp Bot 2011, 62(2):409-438.
  • [40]Maccaferri M, Sanguineti MC, Noli E, Tuberosa R: Population structure and long-range linkage disequilibrium in a durum wheat elite collection. Mol Breed 2005, 15:271-290.
  • [41]Somers DJ, Banks T, Depauw R, Fox S, Clarke J, Pozniak C, McCartney C: Genome-wide linkage disequilibrium analysis in bread wheat and durum wheat. Genome 2007, 50(6):557-567.
  • [42]Van Inghelandt D, Melchinger AE, Lebreton C, Stich B: Population structure and genetic diversity in a commercial maize breeding program assessed with SSR and SNP markers. Theor Appl Genet 2010, 120:1289-1299.
  • [43]Haasl RJ, Payseur BA: Multi-locus inference of population structure: a comparison between single nucleotide polymorphisms and microsatellites. Heredity 2011, 106:158-171.
  文献评价指标  
  下载次数:19次 浏览次数:7次