期刊论文详细信息
BMC Genomics
Single nucleotide polymorphisms generated by genotyping by sequencing to characterize genome-wide diversity, linkage disequilibrium, and selective sweeps in cultivated watermelon
Umesh K Reddy3  Sharon E Mitchell4  Todd C Wehner1  Rishi Reddy3  Sridhar Malkaram3  Venkata Gopinath Vajja3  Thangasamy Saminathan3  Yan R Tomason3  Venkata Lakshmi Abburi3  Lavanya Abburi3  Amnon Levi2  Padma Nimmakayala3 
[1] Department of Horticultural Science, North Carolina State University, Raleigh, NC 27695-7609, USA;U.S. Vegetable Laboratory, USDA, ARS, 2875 Savannah Highway, Charleston, SC 29414, USA;Gus R. Douglass Institute, Department of Biology, West Virginia State University, Dunbar, WV 25112-1000, USA;Genomic Diversity Facility, Institute of Biotechnology, Cornell University, Ithaca, NY 14853, USA
关键词: Citrullus lanatus var. lanatus;    Watermelon;    Genotyping by sequencing;    Population structure;    Selective sweep;    GWAS;    Linkage disequilibrium;   
Others  :  1140805
DOI  :  10.1186/1471-2164-15-767
 received in 2014-06-10, accepted in 2014-08-29,  发布年份 2014
PDF
【 摘 要 】

Background

A large single nucleotide polymorphism (SNP) dataset was used to analyze genome-wide diversity in a diverse collection of watermelon cultivars representing globally cultivated, watermelon genetic diversity. The marker density required for conducting successful association mapping depends on the extent of linkage disequilibrium (LD) within a population. Use of genotyping by sequencing reveals large numbers of SNPs that in turn generate opportunities in genome-wide association mapping and marker-assisted selection, even in crops such as watermelon for which few genomic resources are available. In this paper, we used genome-wide genetic diversity to study LD, selective sweeps, and pairwise FST distributions among worldwide cultivated watermelons to track signals of domestication.

Results

We examined 183 Citrullus lanatus var. lanatus accessions representing domesticated watermelon and generated a set of 11,485 SNP markers using genotyping by sequencing. With a diverse panel of worldwide cultivated watermelons, we identified a set of 5,254 SNPs with a minor allele frequency of ≥ 0.05, distributed across the genome. All ancestries were traced to Africa and an admixture of various ancestries constituted secondary gene pools across various continents. A sliding window analysis using pairwise FST values was used to resolve selective sweeps. We identified strong selection on chromosomes 3 and 9 that might have contributed to the domestication process. Pairwise analysis of adjacent SNPs within a chromosome as well as within a haplotype allowed us to estimate genome-wide LD decay. LD was also detected within individual genes on various chromosomes. Principal component and ancestry analyses were used to account for population structure in a genome-wide association study. We further mapped important genes for soluble solid content using a mixed linear model.

Conclusions

Information concerning the SNP resources, population structure, and LD developed in this study will help in identifying agronomically important candidate genes from the genomic regions underlying selection and for mapping quantitative trait loci using a genome-wide association study in sweet watermelon.

【 授权许可】

   
2014 Nimmakayala et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150325113453763.pdf 5426KB PDF download
Figure 10. 115KB Image download
Figure 9. 180KB Image download
Figure 8. 167KB Image download
Figure 7. 55KB Image download
Figure 6. 131KB Image download
Figure 5. 156KB Image download
Figure 4. 40KB Image download
Figure 3. 37KB Image download
Figure 2. 37KB Image download
Figure 1. 55KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

【 参考文献 】
  • [1]Dane F, Liu J: Diversity and origin of cultivated and citron type watermelon (Citrullus lanatus). Genet Resour Crop Evol 2007, 54(6):1255-1265.
  • [2]Tóth Zoltán GG, Zoltán S, Lajos H, László H: Watermelon (Citrullus lanatus) production in Hungary from the Middle Ages (13th century). Hungarian Agricultural Res 2007, 4:14-19.
  • [3]Paris HS, Daunay M-C, Janick J: Medieval iconography of watermelons in Mediterranean Europe. Ann Bot 2013, 112(5):867-879.
  • [4]Romão R: Northeast Brazil: a secondary center of diversity for watermelon (Citrullus lanatus). Genet Resour Crop Evol 2000, 47(2):207-213.
  • [5]Nimmakayala P, VL A, Bhandary A, Abburi L, Vajja VG, Reddy R, Malkaram S, Venkatramana P, Wijeratne A, Tomason YR, Levi A, Wehner TC, Reddy UK: Use of VeraCode 384-plex assays for watermelon diversity analysis and integrated genetic map of watermelon with single nucleotide polymorphisms and simple sequence repeats. Mol Breeddoi:101007/s11032-014-0056-9 2014
  • [6]Levi A, Thies J, Wechter WP, Harrison H, Simmons A, Reddy U, Nimmakayala P, Fei Z: High frequency oligonucleotides: targeting active gene (HFO-TAG) markers revealed wide genetic diversity among Citrullus spp. accessions useful for enhancing disease or pest resistance in watermelon cultivars. Genet Resour Crop Evol 2013, 60(2):427-440.
  • [7]Nimmakayala P, Islam-Faridi N, Tomason Y, Lutz F, Levi A, Reddy U: Citrullus. In Wild crop relatives: genomic and breeding resources. Edited by Chittaranjan K. Heidelberg: Springer; 2011:59-66.
  • [8]Levi A, Thomas C, Keinath A, Wehner T: Genetic diversity among watermelon (Citrullus lanatus and Citrullus colocynthis) accessions. Genet Resour Crop Evol 2001, 48(6):559-566.
  • [9]Zhang H, Wang H, Guo S, Ren Y, Gong G, Weng Y, Xu Y: Identification and validation of a core set of microsatellite markers for genetic diversity analysis in watermelon, Citrullus lanatus Thunb. Matsum. & Nakai. Euphytica 2012, 186(2):329-342.
  • [10]Decker JE, McKay SD, Rolf MM, Kim J, Molina Alcalá A, Sonstegard TS, Hanotte O, Götherström A, Seabury CM, Praharani L, Babar ME, Correia de Almeida Regitano L, Yildiz MA, Heaton MP, Liu W-S, Lei C-Z, Reecy JM, Saif-Ur-Rehman M, Schnabel RD, Taylor JF: Worldwide Patterns of Ancestry, Divergence, and Admixture in Domesticated Cattle. PLoS Genet 2014, 10(3):e1004254.
  • [11]Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE: A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 2011, 6(5):e19379.
  • [12]Sharpe A, Ramsay L, Sanderson L-A, Fedoruk M, Clarke W, Li R, Kagale S, Vijayan P, Vandenberg A, Bett K: Ancient orphan crop joins modern era: Gene-based SNP discovery and mapping in lentil. BMC Genomics 2013, 14(1):192. BioMed Central Full Text
  • [13]Sonah H, Bastien M, Iquira E, Tardivel A, Légaré G, Boyle B, Normandeau É, Laroche J, Larose S, Jean M, Belzile F: An Improved Genotyping by Sequencing (GBS) Approach Offering Increased Versatility and Efficiency of SNP Discovery and Genotyping. PLoS ONE 2013, 8(1):e54603.
  • [14]De Donato M, Peters SO, Mitchell SE, Hussain T, Imumorin IG: Genotyping-by-sequencing (GBS): a novel, efficient and cost-effective genotyping method for cattle using next-generation sequencing. PLoS ONE 2013, 8(5):e62137.
  • [15]Khatkar M, Moser G, Hayes B, Raadsma H: Strategies and utility of imputed SNP genotypes for genomic analysis in dairy cattle. BMC Genomics 2012, 13:538. BioMed Central Full Text
  • [16]Affymetrix Inc: BRLMM-P: A genotype calling method for the SNP 5.0 array. 2007. http://www.affymetrix.com/support/technical/whitepapers/brlmmp_whitepaper.pdf webcite
  • [17]Doebley JF, Gaut BS, Smith BD: The molecular genetics of crop domestication. Cell 2006, 127(7):1309-1321.
  • [18]Bersaglieri T, Sabeti P, Patterson N, Vanderploeg T, Schaffner S, Drake J, Rhodes M, Reich D, Hirschhorn J: Genetic signatures of strong recent positive selection at the lactase gene. Am J Hum Genet 2004, 74(6):1111-1120.
  • [19]Goddard M, Hayes B, Meuwissen T: Genomic selection in livestock populations. Genet Res (Camb) 2010, 92:413-421.
  • [20]Innan H, Kim Y: Pattern of polymorphism after strong artificial selection in a domestication event. Proc Natl Acad Sci U S A 2004, 101(29):10667-10672.
  • [21]Vigouroux Y, McMullen M, Hittinger CT, Houchins K, Schulz L, Kresovich S, Matsuoka Y, Doebley J: Identifying genes of agronomic importance in maize by screening microsatellites for evidence of selection during domestication. Proc Natl Acad Sci 2002, 99(15):9650-9655.
  • [22]Viquez-Zamora M, Vosman B, van de Geest H, Bovy A, Visser R, Finkers R, van Heusden A: Tomato breeding in the genomics era: insights from a SNP array. BMC Genomics 2013, 14(1):354. BioMed Central Full Text
  • [23]Hermisson J, Pennings P: Soft sweeps: molecular population genetics of adaptation from standing genetic variation. Genetics 2005, 169(4):2335-2352.
  • [24]Zhang L-B, Zhu Q, Wu Z-Q, Ross-Ibarra J, Gaut BS, Ge S, Sang T: Selection on grain shattering genes and rates of rice domestication. New Phytol 2009, 184(3):708-720.
  • [25]Kilian B, Ozkan H, Kohl J, von Haeseler A, Barale F, Deusch O, Brandolini A, Yucel C, Martin W, Salamini F: Haplotype structure at seven barley genes: relevance to gene pool bottlenecks, phylogeny of ear type and site of barley domestication. Mol Gen Genomics 2006, 276(3):230-241.
  • [26]Ramey H, Decker J, McKay S, Rolf M, Schnabel R, Taylor J: Detection of selective sweeps in cattle using genome-wide SNP data. BMC Genomics 2013, 14(1):382. BioMed Central Full Text
  • [27]Li X, Han Y, Wei Y, Acharya A, Farmer AD, Ho J, Monteros MJ, Brummer EC: Development of an alfalfa SNP array and its Use to evaluate patterns of population structure and linkage disequilibrium. PLoS ONE 2014, 9(1):e84329.
  • [28]Pasam R, Sharma R, Malosetti M, van Eeuwijk F, Haseneyer G, Kilian B, Graner A: Genome-wide association studies for agronomical traits in a worldwide spring barley collection. BMC Plant Biology 2012, 12(1):16. BioMed Central Full Text
  • [29]Visioni A, Tondelli A, Francia E, Pswarayi A, Malosetti M, Russell J, Thomas W, Waugh R, Pecchioni N, Romagosa I, Comadran J: Genome-wide association mapping of frost tolerance in barley (Hordeum vulgare L.). BMC Genomics 2013, 14(1):424. BioMed Central Full Text
  • [30]Byrne S, Czaban A, Studer B, Panitz F, Bendixen C, Asp T: Genome wide allele frequency fingerprints (GWAFFs) of populations via genotyping by sequencing. PLoS ONE 2013, 8(3):e57438.
  • [31]Sandlin K, Prothro J, Heesacker A, Khalilian N, Okashah R, Xiang W, Bachlava E, Caldwell DG, Taylor CA, Seymour DK: Comparative mapping in watermelon [Citrullus lanatus (Thunb.) Matsum. et Nakai]. Theor Appl Genet 2012, 125(8):1603-1618.
  • [32]Ren Y, McGregor C, Zhang Y, Gong G, Zhang H, Guo S, Sun H, Cai W, Zhang J, Xu Y: An integrated genetic map based on four mapping populations and quantitative trait loci associated with economically important traits in watermelon (Citrullus lanatus). BMC Plant Biology 2014, 14(1):33. BioMed Central Full Text
  • [33]Guo S, Zhang J, Sun H, Salse J, Lucas WJ, Zhang H, Zheng Y, Mao L, Ren Y, Wang Z, Min J, Guo X, Murat F, Ham B-K, Zhang Z, Gao S, Huang M, Xu Y, Zhong S, Bombarely A, Mueller LA, Zhao H, He H, Zhang Y, Zhang Z, Huang S, Tan T, Pang E, Lin K, Hu Q, et al.: The draft genome of watermelon (Citrullus lanatus) and resequencing of 20 diverse accessions. Nat Genet 2013, 45(1):51-58.
  • [34]Corrado G, Piffanelli P, Caramante M, Coppola M, Rao R: SNP genotyping reveals genetic diversity between cultivated landraces and contemporary varieties of tomato. BMC Genomics 2013, 14(1):835. BioMed Central Full Text
  • [35]Smith J, Haigh J: The hitch-hiking effect of a favourable gene. Genet Res 1974, 23:23-25.
  • [36]Tenaillon M, Sawkins M, Long A, Gaut R, Doebley J, Gaut B: Patterns of DNA sequence polymorphism along chromosome 1 of maize (Zea mays ssp. mays L.). Proc Natl Acad Sci U S A 2001, 98(16):9161-9166.
  • [37]Ross-Ibarra J, Morrell P, Gaut B: Plant domestication, a unique opportunity to identify the genetic basis of adaptation. PNAS 2007, 104:8641-8648.
  • [38]Gross BL, Olsen KM: Genetic perspectives on crop domestication. Trends Plant Sci 2010, 15(9):529-537.
  • [39]Hamblin M, Close T, Bhat P, Chao S, Kling J, Abraham K, Blake T, Brooks W, Cooper B, Griffey C: Population structure and linkage disequilibrium in US barley germplasm: implications for association mapping. Crop Sci 2010, 50(2):556-566.
  • [40]Vilhjalmsson BJ, Nordborg M: The nature of confounding in genome-wide association studies. Nat Rev Genet 2013, 14(1):1-2.
  • [41]Zhang Z, Ersoz E, Lai C, Todhunter R, Tiwari H, Gore M, Bradbury P, Yu J, Arnett D, Ordovas J: Mixed linear model approach adapted for genome-wide association studies. Nat Genet 2010, 42(4):355-360.
  • [42]Kang HM, Sul JH, Service SK, Zaitlen NA, Kong S-y, Freimer NB, Sabatti C, Eskin E: Variance component model to account for sample structure in genome-wide association studies. Nat Genet 2010, 42(4):348-354.
  • [43]Zhao K, Aranzana M, Kim S, Lister C, Shindo C, Tang C, Toomajian C, Zheng H, Dean C, Marjoram P, Nordborg M: An Arabidopsis example of association mapping in structured samples. PLoS Genet 2007., 3(1)
  • [44]Kang HM, Zaitlen NA, Wade CM, Kirby A, Heckerman D, Daly MJ, Eskin E: Efficient control of population structure in model organism association mapping. Genetics 2008, 178(3):1709-1723.
  • [45]Lippert C, Listgarten J, Liu Y, Kadie CM, Davidson RI, Heckerman D: FaST linear mixed models for genome-wide association studies. Nat Meth 2011, 8(10):833-835.
  • [46]Zhai R, Feng Y, Zhan X, Shen X, Wu W, Yu P, Zhang Y, Chen D, Wang H, Lin Z, Cao L, Cheng S: Identification of transcriptome SNPs for assessing allele-specific gene expression in a super-hybrid rice Xieyou9308. PLoS ONE 2013, 8(4):e60668.
  • [47]Xu X, Liu X, Ge S, Jensen JD, Hu F, Li X, Dong Y, Gutenkunst RN, Fang L, Huang L, Li J, He W, Zhang G, Zheng X, Zhang F, Li Y, Yu C, Kristiansen K, Zhang X, Wang J, Wright M, McCouch S, Nielsen R, Wang J, Wang W: Resequencing 50 accessions of cultivated and wild rice yields markers for identifying agronomically important genes. Nat Biotech 2012, 30(1):105-111.
  • [48]Huang X, Lu T, Han B: Resequencing rice genomes: an emerging new era of rice genomics. Trends Genet 2013, 29(4):225-232.
  • [49]Jiao Y, Zhao H, Ren L, Song W, Zeng B, Guo J, Wang B, Liu Z, Chen J, Li W, Zhang M, Xie S, Lai J: Genome-wide genetic changes during modern breeding of maize. Nat Genet 2012, 44(7):812-815.
  • [50]Pritchard J, Stephens M, Rosenberg N, Donnelly P: Association mapping in structured populations. Am J Hum Genet 2000, 67(1):170-181.
  • [51]Evanno G, Regnaut S, Goudet J: Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 2005, 14(8):2611-2620.
  • [52]Weir BS, Cockerham CC: Estimating F-statistics for the analysis of population structure. Evolution 1984, 38(6):1358-1370.
  • [53]Stich B, Mohring J, Piepho HP, Heckenberger M, Buckler ES, Melchinger AE: Comparison of mixed-model approaches for association mapping. Genetics 2008, 178(3):1745-1754.
  • [54]Holm S: A simple sequentially rejective multiple test procedure. Scand J Stat 1979, 6(2):65-70.
  • [55]Benjamini Y, Hochberg Y: Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Royal Stat Soc 1995, 57(1):289-300.
  文献评价指标  
  下载次数:43次 浏览次数:15次