期刊论文详细信息
BMC Genomics
Genomic sequence of the aflatoxigenic filamentous fungus Aspergillus nomius
Shannon B. Beltz1  Brian M. Mack1  Geromy G. Moore1 
[1] United States Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, New Orleans, LA, USA
关键词: Mating-type locus;    Phylogenomics;    Gene ontology;    Genome sequence;    Aspergillus nomius;   
Others  :  1221853
DOI  :  10.1186/s12864-015-1719-6
 received in 2014-12-30, accepted in 2015-06-25,  发布年份 2015
PDF
【 摘 要 】

Background

Aspergillus nomius is an opportunistic pathogen and one of the three most important producers of aflatoxins in section Flavi. This fungus has been reported to contaminate agricultural commodities, but it has also been sampled in non-agricultural areas so the host range is not well known. Having a similar mycotoxin profile as A. parasiticus, isolates of A. nomius are capable of secreting B- and G- aflatoxins.

Results

In this study we discovered that the A. nomius type strain (NRRL 13137) has a genome size of approximately 36 Mb which is comparable to other Aspergilli whose genomes have been sequenced. Its genome encompasses 11,918 predicted genes, 72 % of which were assigned GO terms using BLAST2GO. More than 1,200 of those predicted genes were identified as unique to A. nomius, and the most significantly enriched GO category among the unique genes was oxidoreducatase activity. Phylogenomic inference shows NRRL 13137 as ancestral to the other aflatoxigenic species examined from section Flavi. This strain contains a single mating-type idiomorph designated as MAT1-1.

Conclusions

This study provides a preliminary analysis of the A. nomius genome. Given the recently discovered potential for A. nomius to undergo sexual recombination, and based on our findings, this genome sequence provides an additional evolutionary reference point for studying the genetics and biology of aflatoxin production.

【 授权许可】

   
2015 Moore et al.

【 预 览 】
附件列表
Files Size Format View
20150804031728118.pdf 847KB PDF download
Fig. 4. 179KB Image download
Fig. 3. 7KB Image download
Fig. 2. 8KB Image download
Fig. 1. 41KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

【 参考文献 】
  • [1]Horn BW, Dorner JW. Soil populations of Aspergillus species from section Flavi along a transect through peanut growing regions of the United States. Mycologia. 1998; 90:767-776.
  • [2]Doster MA, Cotty PJ, Michailides TJ. Description of a distinctive aflatoxin-producing strain of Aspergillus nomius that produces submerged sclerotia. Mycopathologia. 2009; 168:193-201.
  • [3]Ehrlich KC, Kobbeman K, Montalbano BG, Cotty PJ. Aflatoxin-producing Aspergillus species from Thailand. Int J Food Microbiol. 2007; 114:153-159.
  • [4]Horn BW, Moore GG, Carbone I. Sexual reproduction in aflatoxin-producing Aspergillus nomius. Mycologia. 2011; 103:174-183.
  • [5]Hesseltine CW, Shotwell OL, Smith M, Ellis JJ, Vandegraft E, Shannon G. Production of various aflatoxins by strains of the Aspergillus flavus series. In: Proceedings of the first U.S.-Japan conference on toxic micro-organisms: 7–10 October 1968; Honolulu. Herzberg M, editor. UJNR Joint Panels on Toxic Micro-organisms and US Department of Interior, Washington, DC; 1970: p.202-210.
  • [6]Kurtzman CP, Horn BW, Hesseltine CW. Aspergillus nomius, a new aflatoxin-producing species related to Aspergillus flavus and Aspergillus tamarii. A Van Leeuw J Microb. 1987; 53:147-158.
  • [7]Ito Y, Peterson SW, Goto T. Isolation and characterization of Aspergillus nomius from Japanese soil and silkworm excrement. Mycotoxins. 1998; 46:9-15.
  • [8]Rojas MG, Morales-Ramos JA, Klich MA, Wright M. Three fungal species isolated from Coptotermes formosanus (Isoptera: Rhinotermitidae) bodies, carton material, and infested wood. Fla Entomol. 2001; 84:156-158.
  • [9]Manikandan P, Varga J, Kocsubé S, Samson RA, Anita R, Revathi R et al.. Mycotic keratitis due to Aspergillus nomius. J Clin Microbiol. 2009; 47:3382-3385.
  • [10]Kumeda Y, Asao T, Takahashi H, Ichinoe M. High prevalence of B and G aflatoxin-producing fungi in sugarcane field soil in Japan: Heteroduplex panel analysis identifies a new genotype within Aspergillus section Flavi and Aspergillus nomius. FEMS Microbiol Ecol. 2003; 45:229-238.
  • [11]Olsen M, Johnsson P, Möller T, Paladino R, Lindblad M. Aspergillus nomius, an important aflatoxin producer in Brazil nuts? World Mycotoxin J. 2008; 1:123-126.
  • [12]Barros GG, Torres AM, Rodriguez MI, Chulze SN. Genetic diversity within Aspergillus flavus strains isolated from peanut-cropped soils in Argentina. Soil Biol Biochem. 2006; 38:145-152.
  • [13]Klich MA. Identification of common Aspergillus species. Centraalbureau voor Schimmelcultures, Utrecht; 2002.
  • [14]Pildain MB, Frisvad JC, Vaamonde G, Cabral D, Varga J, Samson RA. Two novel aflatoxin-producing Aspergillus species from Argentinean peanuts. Int J Syst Evol Microbiol. 2008; 58:725-735.
  • [15]Varga J, Frisvad JC, Samson RA. Two new aflatoxin producing species, and an overview of Aspergillus section Flavi. Stud Mycol. 2011; 69:57-80.
  • [16]Soares C, Rodrigues P, Peterson SW, Lima N, Venâncio A. Three new species of Aspergillus section Flavi isolated from almonds and maize in Portugal. Mycologia. 2012; 104:682-697.
  • [17]Samson RA, Varga J, Witiak SM, Geiser DM. The species concept in Aspergillus: recommendations of an international panel. Stud Mycol. 2007; 59:71-73.
  • [18]Machida M, Asai K, Sano M, Tanaka T, Kumagai T, Terai G et al.. Genome sequencing and analysis of Aspergillus oryzae. Nature. 2005; 438:1157-1161.
  • [19]Payne GA, Nierman WC, Wortman JR, Pritchard BL, Brown D, Dean RA et al.. Whole genome comparison of Aspergillus flavus and A. oryzae. Med Mycol. 2006; 44:9-11.
  • [20]Galagan JE, Calvo SE, Cuomo C, Ma LJ, Wortman JR, Batzoglou S et al.. Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae. Nature. 2005; 438:1105-1115.
  • [21]Pel HJ, de Winde JH, Archer DB, Dyer PS, Hofmann G, Schaap PJ et al.. Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS 513.88. Nat Biotechnol. 2007; 25:221-231.
  • [22]Nierman WC, Pain A, Anderson MJ, Wortman JR, Kim HS, Arroyo J et al.. Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus. Nature. 2005; 438:1151-1156.
  • [23]Federova ND, Moktali V, Medema MH. Bioinformatics approaches and software for detection of secondary metabolite gene clusters. In: Fungal secondary metabolism: methods and protocols. Keller NP, Turner G, editors. Humana Press, New York; 2012: p.23-45.
  • [24]Andersen MR, Nielsen JB, Klitgaard A, Petersen LM, Zachariasen M, Hansen TJ et al.. Accurate prediction of secondary metabolite gene clusters in filamentous fungi. P Natl Acad Sci USA. 2012; 110:E99-107.
  • [25]van den Brink HJM, van Gorcum RFM, van den Hondel CAMJJ, Punt PJ. Cytochrome P450 enzyme systems in fungi. Fungal Gent Biol. 1998; 23:1-17.
  • [26]Ramirez-Prado JH, Moore GG, Horn BW, Carbone I. Characterization and population analysis of the mating-type genes in Aspergillus flavus and Aspergillus parasiticus. Fungal Genet Biol. 2008; 45:1292-1299.
  • [27]Metzenberg RL, Glass NL. Mating type and mating strategies in Neurospora. Bioessays. 1990; 12:53-59.
  • [28]454 sequencing analysis software. http://www. 454.com/products/analysis-software/ webcite
  • [29]Cantarel BL, Korf I, Robb SMC, Parra G, Ross E, Moore B et al.. MAKER: an easy-to-use annotation pipeline designed for emerging model organism genomes. Genome Res. 2008; 18:188-196.
  • [30]Lomsadze A, Ter-Hovhannisyan V, Chernoff YO, Borodovsky M. Gene identification in novel eukaryotic genomes by self-training algorithm. Nucleic Acids Res. 2005; 33:6494-6506.
  • [31]Stanke M, Waack S. Gene prediction with a hidden Markov model and a new intron submodel. Bioinformatics. 2003; 19 Suppl 2:ii215-ii225.
  • [32]J. Craig Venter Institute A. flavus database. ftp://ftp. jcvi.org/pub/data/a_flavus/ webcite
  • [33]Uniref50 protein database. ftp://ftp. uniprot.org/pub/databases/uniprot/uniref/uniref50/uniref50.fasta.gz webcite
  • [34]Jurka J, Kapitonov VV, Pavlicek A, Klonowski P, Kohany O, Walichiewicz J. Repbase update, a database of eukaryotic repetitive elements. Cytogenet Genome Res. 2005; 110:462-467.
  • [35]Tarailo‐Graovac M, Nansheng C. Using RepeatMasker to identify repetitive elements in genomic sequences. Curr Protoc Bioinformatics. 2009; 25(4.10):4.10.1-4.10.14.
  • [36]RefSeq protein database. ftp://ftp. ncbi.nlm.nih.gov/refseq/release/fungi/ webcite
  • [37]Genome annotation generator. https://github. com/genomeannotation/GAG webcite
  • [38]Khaldi N, Seifuddin FT, Turner G, Haft D, Nierman WC, Wolfe KH et al.. SMURF: genomic mapping of fungal secondary metabolite clusters. Fungal Genet Biol. 2010; 47:736-741.
  • [39]Medema MH, Blin K, Cimermancic P, de Jager V, Zakrzewski P, Fischbach MA et al.. antiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences. Nucleic Acids Res. 2011; 39 Suppl 2:W339-W346.
  • [40]Lechner M, Findeiss S, Steiner L, Marz M, Stadler PF, Prohaska SJ. Proteinortho: detection of (Co-) orthologs in large-scale analysis. BMC Bioinformatics. 2011; 12:124. BioMed Central Full Text
  • [41]Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004; 32:1792-1797.
  • [42]Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol. 2000; 17:540-552.
  • [43]Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics. 2006; 22:2688-2690.
  • [44]Bioinformatics and evolutionary genomics: venn diagram software. http://bioinformatics. psb.ugent.be/webtools/Venn/ webcite
  • [45]Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics. 2005; 21:3674-3676.
  • [46]Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994; 22:4673-4680.
  • [47]Stamatakis A, Ludwig T, Meier H. RAxML-III: a fast program for maximum likelihood-based inference of large phylogenetic trees. Bioinformatics. 2005; 21:456-463.
  文献评价指标  
  下载次数:95次 浏览次数:36次