| BMC Genomics | |
| Comparative genome analysis of entomopathogenic fungi reveals a complex set of secreted proteins | |
| Augusto Schrank2  Ana Tereza Ribeiro de Vasconcelos1  Marilene Henning Vainstein2  Lívia Kmetzsch2  Eder Silva de Oliveira2  Thaiane Rispoli Serrano2  Carolina Pereira Silveira2  Walter Orlando Beys-da-Silva2  Lucélia Santi2  Melissa Landell2  Leonardo Broetto2  Rana Louise de Andrade da Paixão2  Nicolau Sbaraini2  Alexandra Lehmkuhl Gerber1  Fábio Carrer Andreis2  Luiz Gonzaga Paula de Almeida1  Juliano Tomazzoni Boldo2  Guilherme Loss de Morais1  Claudia Elizabeth Thompson2  Rafael Lucas Muniz Guedes1  Ângela Junges2  Charley Christian Staats2  | |
| [1] Laboratório Nacional de Computação Científica (LNCC), Av. Getúlio Vargas, 333, Petrópolis, RJ, Brazil;Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), P. O. Box 15005, Porto Alegre, RS CEP 91501-970, Brazil | |
| 关键词: Phylogenomics; Secretome; Entomopathogenic fungi; Genome sequence; | |
| Others : 1139509 DOI : 10.1186/1471-2164-15-822 |
|
| received in 2014-06-04, accepted in 2014-08-29, 发布年份 2014 | |
PDF
|
|
【 摘 要 】
Background
Metarhizium anisopliae is an entomopathogenic fungus used in the biological control of some agricultural insect pests, and efforts are underway to use this fungus in the control of insect-borne human diseases. A large repertoire of proteins must be secreted by M. anisopliae to cope with the various available nutrients as this fungus switches through different lifestyles, i.e., from a saprophytic, to an infectious, to a plant endophytic stage. To further evaluate the predicted secretome of M. anisopliae, we employed genomic and transcriptomic analyses, coupled with phylogenomic analysis, focusing on the identification and characterization of secreted proteins.
Results
We determined the M. anisopliae E6 genome sequence and compared this sequence to other entomopathogenic fungi genomes. A robust pipeline was generated to evaluate the predicted secretomes of M. anisopliae and 15 other filamentous fungi, leading to the identification of a core of secreted proteins. Transcriptomic analysis using the tick Rhipicephalus microplus cuticle as an infection model during two periods of infection (48 and 144 h) allowed the identification of several differentially expressed genes. This analysis concluded that a large proportion of the predicted secretome coding genes contained altered transcript levels in the conditions analyzed in this study. In addition, some specific secreted proteins from Metarhizium have an evolutionary history similar to orthologs found in Beauveria/Cordyceps. This similarity suggests that a set of secreted proteins has evolved to participate in entomopathogenicity.
Conclusions
The data presented represents an important step to the characterization of the role of secreted proteins in the virulence and pathogenicity of M. anisopliae.
【 授权许可】
2014 Staats et al.; licensee BioMed Central Ltd.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20150321162816663.pdf | 2053KB | ||
| Figure 6. | 112KB | Image | |
| Figure 5. | 97KB | Image | |
| Figure 4. | 74KB | Image | |
| Figure 3. | 52KB | Image | |
| Figure 2. | 59KB | Image | |
| Figure 1. | 55KB | Image |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
【 参考文献 】
- [1]Mora C, Tittensor DP, Adl S, Simpson AG, Worm B: How many species are there on Earth and in the ocean? PLoS Biol 2011, 9:e1001127.
- [2]Blackwell M: The Fungi: 1, 2, 3 … 5.1 million species? Am J Bot 2011, 98:426-438.
- [3]Girard V, Dieryckx C, Job C, Job D: Secretomes: the fungal strike force. Proteomics 2013, 13:597-608.
- [4]Basset Y, Cizek L, Cuénoud P, Didham RK, Guilhaumon F, Missa O, Novotny V, Ødegaard F, Roslin T, Schmidl J, Tishechkin AK, Winchester NN, Roubik DW, Aberlenc H-P, Bail J, Barrios H, Bridle JR, Castaño-Meneses G, Corbara B, Curletti G, da Rocha WD, De Bakker D, Delabie JHC, Dejean A, Fagan LL, Floren A, Kitching RL, Medianero E, Miller SE, de Oliveira EG, et al.: Arthropod diversity in a tropical forest. Science 2012, 338:1481-1484.
- [5]Hasan S, Ahmad A, Purwar A, Khan N, Kundan R, Gupta G: Production of extracellular enzymes in the entomopathogenic fungus Verticillium lecanii. Bioinformation 2013, 9:238-242.
- [6]da Silva WO B, Santi L, Correa AP, Silva LA, Bresciani FR, Schrank A, Vainstein MH: The entomopathogen Metarhizium anisopliae can modulate the secretion of lipolytic enzymes in response to different substrates including components of arthropod cuticle. Fungal Biol 2010, 114:911-916.
- [7]Santi L, Silva WO, Pinto AF, Schrank A, Vainstein MH: Metarhizium anisopliae host-pathogen interaction: differential immunoproteomics reveals proteins involved in the infection process of arthropods. Fungal Biol 2010, 114:312-319.
- [8]Murad AM, Noronha EF, Miller RN, Costa FT, Pereira CD, Mehta A, Caldas RA, Franco OL: Proteomic analysis of Metarhizium anisopliae secretion in the presence of the insect pest Callosobruchus maculatus. Microbiology 2008, 154:3766-3774.
- [9]da Silva MV, Santi L, Staats CC, da Costa AM, Colodel EM, Driemeier D, Vainstein MH, Schrank A: Cuticle-induced endo/exoacting chitinase CHIT30 from Metarhizium anisopliae is encoded by an ortholog of the chi3 gene. Res Microbiol 2005, 156:382-392.
- [10]Barreto CC, Staats CC, Schrank A, Vainstein MH: Distribution of chitinases in the entomopathogen Metarhizium anisopliae and effect of N-acetylglucosamine in protein secretion. Curr Microbiol 2004, 48:102-107.
- [11]Arruda W, Lubeck I, Schrank A, Vainstein MH: Morphological alterations of Metarhizium anisopliae during penetration of Boophilus microplus ticks. Exp Appl Acarol 2005, 37:231-244.
- [12]Schrank A, Vainstein MH: Metarhizium anisopliae enzymes and toxins. Toxicon 2010, 56:1267-1274.
- [13]Butt TM, Greenfield BP, Greig C, Maffeis TG, Taylor JW, Piasecka J, Dudley E, Abdulla A, Dubovskiy IM, Garrido-Jurado I, Quesada-Moraga E, Penny MW, Eastwood DC: Metarhizium anisopliae pathogenesis of mosquito larvae: a verdict of accidental death. PLoS One 2013, 8:e81686.
- [14]Freimoser FM, Hu G, St Leger RJ: Variation in gene expression patterns as the insect pathogen Metarhizium anisopliae adapts to different host cuticles or nutrient deprivation in vitro. Microbiology 2005, 151:361-371.
- [15]Fernandes EK, Bittencourt VR, Roberts DW: Perspectives on the potential of entomopathogenic fungi in biological control of ticks. Exp Parasitol 2012, 130:300-305.
- [16]Faria MR, Wraight SP: Mycoinsecticides and Mycoacaricides: a comprehensive list with worldwide coverage and international classification of formulation types. Biological Control 2007, 43:237-256.
- [17]Bischoff JF, Rehner SA, Humber RA: A multilocus phylogeny of the Metarhizium anisopliae lineage. Mycologia 2009, 101:512-530.
- [18]Gao Q, Jin K, Ying SH, Zhang Y, Xiao G, Shang Y, Duan Z, Hu X, Xie XQ, Zhou G, Peng G, Luo Z, Huang W, Wang B, Fang W, Wang S, Zhong Y, Ma LJ, St Leger RJ, Zhao GP, Pei Y, Feng MG, Xia Y, Wang C: Genome sequencing and comparative transcriptomics of the model entomopathogenic fungi Metarhizium anisopliae and M. acridum. PLoS Genet 2011, 7:e1001264.
- [19]Xiao G, Ying SH, Zheng P, Wang ZL, Zhang S, Xie XQ, Shang Y, St Leger RJ, Zhao GP, Wang C, Feng MG: Genomic perspectives on the evolution of fungal entomopathogenicity in Beauveria bassiana. Sci Rep 2012, 2:483.
- [20]Schattner P, Brooks AN, Lowe TM: The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs. Nucleic Acids Res 2005, 33:W686-W689.
- [21]Laslett D, Canback B: ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. Nucleic Acids Res 2004, 32:11-16.
- [22]Zheng P, Xia Y, Xiao G, Xiong C, Hu X, Zhang S, Zheng H, Huang Y, Zhou Y, Wang S, Zhao GP, Liu X, St Leger RJ, Wang C: Genome sequence of the insect pathogenic fungus Cordyceps militaris, a valued traditional Chinese medicine. Genome Biol 2011, 12:R116. BioMed Central Full Text
- [23]Boldo JT, Junges A, do Amaral KB, Staats CC, Vainstein MH, Schrank A: Endochitinase CHI2 of the biocontrol fungus Metarhizium anisopliae affects its virulence toward the cotton stainer bug Dysdercus peruvianus. Curr Genet 2009, 55:551-560.
- [24]Fang W, Leng B, Xiao Y, Jin K, Ma J, Fan Y, Feng J, Yang X, Zhang Y, Pei Y: Cloning of Beauveria bassiana chitinase gene Bbchit1 and its application to improve fungal strain virulence. Appl Environ Microbiol 2005, 71:363-370.
- [25]Zhou G, Wang J, Qiu L, Feng MG: A Group III histidine kinase (mhk1) upstream of high-osmolarity glycerol pathway regulates sporulation, multi-stress tolerance and virulence of Metarhizium robertsii, a fungal entomopathogen. Environ Microbiol 2012, 14:817-829.
- [26]Brown NA, Antoniw J, Hammond-Kosack KE: The predicted secretome of the plant pathogenic fungus Fusarium graminearum: a refined comparative analysis. PLoS One 2012, 7:e33731.
- [27]Oliveira DL, Rizzo J, Joffe LS, Godinho RM, Rodrigues ML: Where do they come from and where do they go: candidates for regulating extracellular vesicle formation in fungi. Int J Mol Sci 2013, 14:9581-9603.
- [28]Rodrigues ML, Nakayasu ES, Almeida IC, Nimrichter L: The impact of proteomics on the understanding of functions and biogenesis of fungal extracellular vesicles. J Proteomics 2014, 97:177-186.
- [29]Harding CV, Heuser JE, Stahl PD: Exosomes: looking back three decades and into the future. J Cell Biol 2013, 200:367-371.
- [30]Vallejo MC, Nakayasu ES, Matsuo AL, Sobreira TJ, Longo LV, Ganiko L, Almeida IC, Puccia R: Vesicle and vesicle-free extracellular proteome of Paracoccidioides brasiliensis: comparative analysis with other pathogenic fungi. J Proteome Res 2012, 11:1676-1685.
- [31]Rodrigues ML, Nosanchuk JD, Schrank A, Vainstein MH, Casadevall A, Nimrichter L: Vesicular transport systems in fungi. Future Microbiol 2011, 6:1371-1381.
- [32]Rodrigues ML, Djordjevic JT: Unravelling secretion in Cryptococcus neoformans: more than one way to skin a cat. Mycopathologia 2012, 173:407-418.
- [33]Hansen SF, Bettler E, Rinnan A, Engelsen SB, Breton C: Exploring genomes for glycosyltransferases. Mol Biosyst 2010, 6:1773-1781.
- [34]Boldo JT, do Amaral KB, Junges A, Pinto PM, Staats CC, Vainstein MH, Schrank A: Evidence of alternative splicing of the chi2 chitinase gene from Metarhizium anisopliae. Gene 2010, 462:1-7.
- [35]Gruber S, Seidl-Seiboth V: Self versus non-self: fungal cell wall degradation in Trichoderma. Microbiology 2012, 158:26-34.
- [36]Brzezinska MS, Jankiewicz U: Production of antifungal chitinase by Aspergillus niger LOCK 62 and its potential role in the biological control. Curr Microbiol 2012, 65:666-672.
- [37]Wang S, Leclerque A, Pava-Ripoll M, Fang W, St Leger RJ: Comparative genomics using microarrays reveals divergence and loss of virulence-associated genes in host-specific strains of the insect pathogen Metarhizium anisopliae. Eukaryot Cell 2009, 8:888-898.
- [38]Martinez D, Berka RM, Henrissat B, Saloheimo M, Arvas M, Baker SE, Chapman J, Chertkov O, Coutinho PM, Cullen D, Danchin EG, Grigoriev IV, Harris P, Jackson M, Kubicek CP, Han CS, Ho I, Larrondo LF, de Leon AL, Magnuson JK, Merino S, Misra M, Nelson B, Putnam N, Robbertse B, Salamov AA, Schmoll M, Terry A, Thayer N, Westerholm-Parvinen A, et al.: Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nat Biotechnol 2008, 26:553-560.
- [39]Lai JS, Cheng CW, Sung TY, Hsu WL: Computational comparative study of tuberculosis proteomes using a model learned from signal peptide structures. PLoS One 2012, 7:e35018.
- [40]Braaksma M, Martens-Uzunova ES, Punt PJ, Schaap PJ: An inventory of the Aspergillus niger secretome by combining in silico predictions with shotgun proteomics data. BMC Genomics 2010, 11:584. BioMed Central Full Text
- [41]Abaev I, Foster-Frey J, Korobova O, Shishkova N, Kiseleva N, Kopylov P, Pryamchuk S, Schmelcher M, Becker SC, Donovan DM: Staphylococcal phage 2638A endolysin is lytic for Staphylococcus aureus and harbors an inter-lytic-domain secondary translational start site. Appl Microbiol Biotechnol 2013, 97:3449-3456.
- [42]Helsens K, Van Damme P, Degroeve S, Martens L, Arnesen T, Vandekerckhove J, Gevaert K: Bioinformatics analysis of a Saccharomyces cerevisiae N-terminal proteome provides evidence of alternative translation initiation and post-translational N-terminal acetylation. J Proteome Res 2011, 10:3578-3589.
- [43]Smollett KL, Fivian-Hughes AS, Smith JE, Chang A, Rao T, Davis EO: Experimental determination of translational start sites resolves uncertainties in genomic open reading frame predictions - application to Mycobacterium tuberculosis. Microbiology 2009, 155:186-197.
- [44]Chabregas SM, Luche DD, Van Sluys MA, Menck CF, Silva-Filho MC: Differential usage of two in-frame translational start codons regulates subcellular localization of Arabidopsis thaliana THI1. J Cell Sci 2003, 116:285-291.
- [45]Fujita M, Kinoshita T: GPI-anchor remodeling: potential functions of GPI-anchors in intracellular trafficking and membrane dynamics. Biochim Biophys Acta 1821, 2012:1050-1058.
- [46]Pittet M, Conzelmann A: Biosynthesis and function of GPI proteins in the yeast Saccharomyces cerevisiae. Biochim Biophys Acta 2007, 1771:405-420.
- [47]Maddi A, Fu C, Free SJ: The Neurospora crassa dfg5 and dcw1 genes encode alpha-1,6-mannanases that function in the incorporation of glycoproteins into the cell wall. PLoS One 2012, 7:e38872.
- [48]Choi CJ, Ju HJ, Park BH, Qin R, Jahng KY, Han DM, Chae KS: Isolation and characterization of the Aspergillus nidulans eglC gene encoding a putative beta-1,3-endoglucanase. Fungal Genet Biol 2005, 42:590-600.
- [49]Chen Y, Zhu J, Ying SH, Feng MG: The GPI-anchored protein Ecm33 is vital for conidiation, cell wall integrity, and multi-stress tolerance of two filamentous entomopathogens but not for virulence. Appl Microbiol Biotechnol 2014, 98:5517-5529.
- [50]Zhang J: Evolution by gene duplication: an update. Trends Ecol Evol 2003, 18:292-298.
- [51]Cohen-Gihon I, Sharan R, Nussinov R: Processes of fungal proteome evolution and gain of function: gene duplication and domain rearrangement. Phys Biol 2011, 8:035009.
- [52]Coleman JJ, Rounsley SD, Rodriguez-Carres M, Kuo A, Wasmann CC, Grimwood J, Schmutz J, Taga M, White GJ, Zhou S, Schwartz DC, Freitag M, Ma LJ, Danchin EG, Henrissat B, Coutinho PM, Nelson DR, Straney D, Napoli CA, Barker BM, Gribskov M, Rep M, Kroken S, Molnar I, Rensing C, Kennell JC, Zamora J, Farman ML, Selker EU, Salamov A, et al.: The genome of Nectria haematococca: contribution of supernumerary chromosomes to gene expansion. PLoS Genet 2009, 5:e1000618.
- [53]Sasan RK, Bidochka MJ: The insect-pathogenic fungus Metarhizium robertsii (Clavicipitaceae) is also an endophyte that stimulates plant root development. Am J Bot 2012, 99:101-107.
- [54]Wyrebek M, Huber C, Sasan RK, Bidochka MJ: Three sympatrically occurring species of Metarhizium show plant rhizosphere specificity. Microbiology 2011, 157:2904-2911.
- [55]Robinson MD, McCarthy DJ, Smyth GK: edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010, 26:139-140.
- [56]Guo Y, Li CI, Ye F, Shyr Y: Evaluation of read count based RNAseq analysis methods. BMC Genomics 2013, 14(8):S2.
- [57]de Lima Morais DA, Fang H, Rackham OJ, Wilson D, Pethica R, Chothia C, Gough J: SUPERFAMILY 1.75 including a domain-centric gene ontology method. Nucleic Acids Res 2011, 39:D427-D434.
- [58]Bagga S, Hu G, Screen SE, St Leger RJ: Reconstructing the diversification of subtilisins in the pathogenic fungus Metarhizium anisopliae. Gene 2004, 324:159-169.
- [59]Irie T, Matsumura H, Terauchi R, Saitoh H: Serial Analysis of Gene Expression (SAGE) of Magnaporthe grisea: genes involved in appressorium formation. Mol Genet Genomics 2003, 270:181-189.
- [60]Laronde-Leblanc N, Guszczynski T, Copeland T, Wlodawer A: Structure and activity of the atypical serine kinase Rio1. FEBS J 2005, 272:3698-3713.
- [61]St Leger RJ, Joshi L, Bidochka MJ, Rizzo NW, Roberts DW: Biochemical characterization and ultrastructural localization of two extracellular trypsins produced by Metarhizium anisopliae in infected insect cuticles. Appl Environ Microbiol 1996, 62:1257-1264.
- [62]St Leger RJ, Joshi L, Roberts D: Ambient pH is a major determinant in the expression of cuticle-degrading enzymes and hydrophobin by Metarhizium anisopliae. Appl Environ Microbiol 1998, 64:709-713.
- [63]Screen SE, St Leger RJ: Cloning, expression, and substrate specificity of a fungal chymotrypsin. Evidence for lateral gene transfer from an actinomycete bacterium. J Biol Chem 2000, 275:6689-6694.
- [64]Lopez-Berges MS, Rispail N, Prados-Rosales RC, Di Pietro A: A nitrogen response pathway regulates virulence in plant pathogenic fungi: role of TOR and the bZIP protein MeaB. Plant Signal Behav 2010, 5:1623-1625.
- [65]Sevim A, Donzelli BG, Wu D, Demirbag Z, Gibson DM, Turgeon BG: Hydrophobin genes of the entomopathogenic fungus, Metarhizium brunneum, are differentially expressed and corresponding mutants are decreased in virulence. Curr Genet 2012, 58:79-92.
- [66]Garcia-Santamarina S, Boronat S, Calvo IA, Rodriguez-Gabriel M, Ayte J, Molina H, Hidalgo E: Is oxidized thioredoxin a major trigger for cysteine oxidation? Clues from a redox proteomics approach. Antioxid Redox Signal 2013, 18:1549-1556.
- [67]Kubicek CP, Herrera-Estrella A, Seidl-Seiboth V, Martinez DA, Druzhinina IS, Thon M, Zeilinger S, Casas-Flores S, Horwitz BA, Mukherjee PK, Kredics L, Alcaraz LD, Aerts A, Antal Z, Atanasova L, Cervantes-Badillo MG, Challacombe J, Chertkov O, McCluskey K, Coulpier F, Deshpande N, von Dohren H, Ebbole DJ, Esquivel-Naranjo EU, Fekete E, Flipphi M, Glaser F, Gomez-Rodriguez EY, Gruber S, et al.: Comparative genome sequence analysis underscores mycoparasitism as the ancestral life style of Trichoderma. Genome Biol 2011, 12:R40. BioMed Central Full Text
- [68]Srivastava SK, Huang X, Brar HK, Fakhoury AM, Bluhm BH, Bhattacharyya MK: The genome sequence of the fungal pathogen Fusarium virguliforme that causes sudden death syndrome in soybean. PLoS One 2014, 9:e81832.
- [69]Galagan JE, Calvo SE, Cuomo C, Ma LJ, Wortman JR, Batzoglou S, Lee SI, Basturkmen M, Spevak CC, Clutterbuck J, Kapitonov V, Jurka J, Scazzocchio C, Farman M, Butler J, Purcell S, Harris S, Braus GH, Draht O, Busch S, D'Enfert C, Bouchier C, Goldman GH, Bell-Pedersen D, Griffiths-Jones S, Doonan JH, Yu J, Vienken K, Pain A, Freitag M, et al.: Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae. Nature 2005, 438:1105-1115.
- [70]Cerqueira GC, Arnaud MB, Inglis DO, Skrzypek MS, Binkley G, Simison M, Miyasato SR, Binkley J, Orvis J, Shah P, Wymore F, Sherlock G, Wortman JR: The Aspergillus Genome Database: multispecies curation and incorporation of RNA-Seq data to improve structural gene annotations. Nucleic Acids Res 2014, 42:D705-D710.
- [71]Druzhinina IS, Seidl-Seiboth V, Herrera-Estrella A, Horwitz BA, Kenerley CM, Monte E, Mukherjee PK, Zeilinger S, Grigoriev IV, Kubicek CP: Trichoderma: the genomics of opportunistic success. Nat Rev Microbiol 2011, 9:749-759.
- [72]St Leger RJ, Joshi L, Roberts DW: Adaptation of proteases and carbohydrates of saprophytic, phytopathogenic and entomopathogenic fungi to the requirements of their ecological niches. Microbiology 1997, 143(Pt 6):1983-1992.
- [73]Cuomo CA, Guldener U, Xu JR, Trail F, Turgeon BG, Di Pietro A, Walton JD, Ma LJ, Baker SE, Rep M, Adam G, Antoniw J, Baldwin T, Calvo S, Chang YL, Decaprio D, Gale LR, Gnerre S, Goswami RS, Hammond-Kosack K, Harris LJ, Hilburn K, Kennell JC, Kroken S, Magnuson JK, Mannhaupt G, Mauceli E, Mewes HW, Mitterbauer R, Muehlbauer G, et al.: The Fusarium graminearum genome reveals a link between localized polymorphism and pathogen specialization. Science 2007, 317:1400-1402.
- [74]Behie SW, Bidochka MJ: Ubiquity of insect-derived nitrogen transfer to plants by endophytic insect-pathogenic fungi: an additional branch of the soil nitrogen cycle. Appl Environ Microbiol 2014, 80:1553-1560.
- [75]Behie SW, Padilla-Guerrero IE, Bidochka MJ: Nutrient transfer to plants by phylogenetically diverse fungi suggests convergent evolutionary strategies in rhizospheric symbionts. Commun Integr Biol 2013, 6:e22321.
- [76]Behie SW, Zelisko PM, Bidochka MJ: Endophytic insect-parasitic fungi translocate nitrogen directly from insects to plants. Science 2012, 336:1576-1577.
- [77]Wang H, Xu Z, Gao L, Hao B: A fungal phylogeny based on 82 complete genomes using the composition vector method. BMC Evol Biol 2009, 9:195. BioMed Central Full Text
- [78]Cove DJ: The induction and repression of nitrate reductase in the fungus Aspergillus nidulans. Biochim Biophys Acta 1966, 113:51-56.
- [79]Gomez-Alvarez V, Teal TK, Schmidt TM: Systematic artifacts in metagenomes from complex microbial communities. ISME J 2009, 3:1314-1317.
- [80]Sommer DD, Delcher AL, Salzberg SL, Pop M: Minimus: a fast, lightweight genome assembler. BMC Bioinformatics 2007, 8:64. BioMed Central Full Text
- [81]Gordon D, Green P: Consed: a graphical editor for next-generation sequencing. Bioinformatics 2013, 29:2936-2937.
- [82]Almeida LG, Paixao R, Souza RC, Costa GC, Barrientos FJ, Santos MT, Almeida DF, Vasconcelos AT: A System for Automated Bacterial (genome) Integrated Annotation–SABIA. Bioinformatics 2004, 20:2832-2833.
- [83]Stanke M, Steinkamp R, Waack S, Morgenstern B: AUGUSTUS: a web server for gene finding in eukaryotes. Nucleic Acids Res 2004, 32:W309-W312.
- [84]Petersen TN, Brunak S, von Heijne G, Nielsen H: SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 2011, 8:785-786.
- [85]Emanuelsson O, Nielsen H, Brunak S, von Heijne G: Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol 2000, 300:1005-1016.
- [86]Krogh A, Larsson B, von Heijne G, Sonnhammer EL: Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 2001, 305:567-580.
- [87]Pierleoni A, Martelli PL, Casadio R: PredGPI: a GPI-anchor predictor. BMC Bioinformatics 2008, 9:392. BioMed Central Full Text
- [88]Horton P, Park KJ, Obayashi T, Fujita N, Harada H, Adams-Collier CJ, Nakai K: WoLF PSORT: protein localization predictor. Nucleic Acids Res 2007, 35:W585-W587.
- [89]Gattiker A, Gasteiger E, Bairoch A: ScanProsite: a reference implementation of a PROSITE scanning tool. Appl Bioinformatics 2002, 1:107-108.
- [90]Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M: The KEGG resource for deciphering the genome. Nucleic Acids Res 2004, 32:D277-D280.
- [91]Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, Heger A, Hetherington K, Holm L, Mistry J, Sonnhammer EL, Tate J, Punta M: Pfam: the protein families database. Nucleic Acids Res 2014, 42:D222-D230.
- [92]Winnenburg R, Urban M, Beacham A, Baldwin TK, Holland S, Lindeberg M, Hansen H, Rawlings C, Hammond-Kosack KE, Kohler J: PHI-base update: additions to the pathogen host interaction database. Nucleic Acids Res 2008, 36:D572-D576.
- [93]Gotz S, Garcia-Gomez JM, Terol J, Williams TD, Nagaraj SH, Nueda MJ, Robles M, Talon M, Dopazo J, Conesa A: High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res 2008, 36:3420-3435.
- [94]Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL: TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol 2013, 14:R36. BioMed Central Full Text
- [95]Li L, Stoeckert CJ Jr, Roos DS: OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res 2003, 13:2178-2189.
- [96]Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Soding J, Thompson JD, Higgins DG: Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 2011, 7:539.
- [97]Roure B, Rodriguez-Ezpeleta N, Philippe H: SCaFoS: a tool for selection, concatenation and fusion of sequences for phylogenomics. BMC Evol Biol 2007, 7(1):S2. BioMed Central Full Text
- [98]Willis LG, Winston ML, Honda BM: Phylogenetic relationships in the honeybee (genus Apis) as determined by the sequence of the cytochrome oxidase II region of mitochondrial DNA. Mol Phylogenet Evol 1992, 1:169-178.
- [99]Kumar S, Stecher G, Peterson D, Tamura K: MEGA-CC: computing core of molecular evolutionary genetics analysis program for automated and iterative data analysis. Bioinformatics 2012, 28:2685-2686.
- [100]Schmidt HA, Strimmer K, Vingron M, von Haeseler A: TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics 2002, 18:502-504.
- [101]Saitou N, Nei M: The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987, 4:406-425.
- [102]le Vinh S, Fuehrer A, von Haeseler A: Random Tree-Puzzle leads to the Yule-Harding distribution. Mol Biol Evol 2011, 28:873-877.
- [103]Page RD: TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 1996, 12:357-358.
- [104]Creevey CJ, McInerney JO: Clann: investigating phylogenetic information through supertree analyses. Bioinformatics 2005, 21:390-392.
- [105]Pattemore JA, Hane JK, Williams AH, Wilson BAL, Stodart BJ, Ash GJ: The genome sequence of the biocontrol fungus Metarhizium anisopliae and comparative genomics of Metarhizium species. BMC Genomics 2014, 15:660. BioMed Central Full Text
PDF