期刊论文详细信息
BMC Cancer
The genetic basis for inactivation of Wnt pathway in human osteosarcoma
Xiaoling Du3  Jilong Yang1  Da Yang1  Wei Tian2  Ze Zhu3 
[1] Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
[2] Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin 30060, China
[3] Department of Medical Microbiology, Tianjin Medical University, Tianjin 300060, China
关键词: Microarray-based comparative genomic hybridization;    Genetic aberration;    Wnt signal pathway;    Osteosarcoma;   
Others  :  855674
DOI  :  10.1186/1471-2407-14-450
 received in 2013-12-27, accepted in 2014-06-05,  发布年份 2014
PDF
【 摘 要 】

Background

Osteosarcoma is a highly genetically unstable tumor with poor prognosis. We performed microarray-based comparative genomic hybridization (aCGH), transcriptome sequencing (RNA-seq), and pathway analysis to gain a systemic view of the pathway alterations of osteosarcoma.

Methods

aCGH experiments were carried out on 10 fresh osteosarcoma samples. The output data (Gene Expression Omnibus Series accession number GSE19180) were pooled with published aCGH raw data (GSE9654) to determine recurrent copy number changes. These were analyzed using Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis to identify altered pathways in osteosarcoma. Transcriptome sequencing of six osteosarcomas was performed to detect the expression profile of Wnt signaling pathway genes. Protein expression of WNT1, β-catenin, c-myc, and cyclin D1 in the Wnt pathway was detected by immunohistochemistry (IHC) in an independent group of 46 osteosarcoma samples.

Results

KEGG pathway analysis identified frequent deletions of Wnt and other Wnt signaling pathway genes. At the mRNA level, transcriptome sequencing found reduced levels of mRNA expression of Wnt signaling pathway transcripts. While WNT1 protein expression was detected by IHC in 69.6% (32/46) of the osteosarcomas, no β-catenin protein was detected in the nucleus. β-catenin protein expression was, however, detected in the membrane and cytoplasm of 69.6% (32/46) of the osteosarcomas. c-myc protein expression was detected in only 47.8% (22/46) and cyclin D1 protein expression in 52.2% (24/46) of osteosarcoma samples. Kaplan-Meier survival analysis showed that WNT1-negative patients had a trend towards longer disease free survival than WNT1-positive patients. Interestingly, in WNT1-negative patients, those who were also cyclin D1-negative had significantly longer disease free survival than cyclin D1-positive patients. However, there was no significant association between any of the investigated proteins and overall survival of human osteosarcoma patients.

Conclusions

Frequent deletions of Wnt and other Wnt signaling pathway genes suggest that the Wnt signaling pathway is genetically inactivated in human osteosarcoma.

【 授权许可】

   
2014 Du et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140722055255216.pdf 1555KB PDF download
178KB Image download
199KB Image download
83KB Image download
84KB Image download
【 图 表 】

【 参考文献 】
  • [1]Picci P, Mercuri M, Ferrari S, Alberghini M, Briccoli A, Ferrari C, Pignotti E, Bacci G: Survival in high-grade osteosarcoma: improvement over 21 years at a single institution. Ann Oncol 2010, 21(6):1366-1373.
  • [2]Yang J, Yang D, Sun Y, Sun B, Wang G, Trent JC, Araujo DM, Chen K, Zhang W: Genetic amplification of the vascular endothelial growth factor (VEGF) pathway genes, including VEGFA, in human osteosarcoma. Cancer 2011, 117(21):4925-4938.
  • [3]Yang J, Cogdell D, Yang D, Hu L, Li H, Zheng H, Du X, Pang Y, Trent J, Chen K, Zhang W: Deletion of the WWOX gene and frequent loss of its protein expression in human osteosarcoma. Cancer Lett 2010, 291(1):31-38.
  • [4]Bjornsti MA, Houghton PJ: The TOR pathway: a target for cancer therapy. Nat Rev Cancer 2004, 4(5):335-348.
  • [5]Thomas DM: Wnts, bone and cancer. J Pathol 2010, 220(1):1-4.
  • [6]Iwaya K, Ogawa H, Kuroda M, Izumi M, Ishida T, Mukai K: Cytoplasmic and/or nuclear staining of beta-catenin is associated with lung metastasis. Clin Exp Metastasis 2003, 20(6):525-529.
  • [7]Kansara M, Tsang M, Kodjabachian L, Sims NA, Trivett MK, Ehrich M, Dobrovic A, Slavin J, Choong PF, Simmons PJ, Dawid IB, Thomas DM: Wnt inhibitory factor 1 is epigenetically silenced in human osteosarcoma, and targeted disruption accelerates osteosarcomagenesis in mice. J Clin Invest 2009, 119(4):837-851.
  • [8]Cai Y, Mohseny AB, Karperien M, Hogendoorn PC, Zhou G, Cleton-Jansen AM: Inactive Wnt/beta-catenin pathway in conventional high-grade osteosarcoma. J Pathol 2010, 220(1):24-33.
  • [9]Meyers PA, Heller G, Healey J, Huvos A, Lane J, Marcove R, Applewhite A, Vlamis V, Rosen G: Chemotherapy for nonmetastatic osteogenic sarcoma: the Memorial Sloan-Kettering experience. J Clin Oncol 1992, 10(1):5-15.
  • [10]Boussen H, Mezzi F, Gamoudi A, Daldoul O, Ben Hamida H, Mezlini A, Khalfallah S, Karray S, Ben Romdhane K, Ben Ghachem M, Ben Abdallah M, Douik M, Saadi A, Ben Ayed F, Ben Hassine H: [Primary chemotherapy with the Rosen T10 protocol before conservative surgery in limb primitive osteosarcomas: results about 56 cases]. Bull Cancer 2000, 87(2):183-188.
  • [11]Squire JA, Pei J, Marrano P, Beheshti B, Bayani J, Lim G, Moldovan L, Zielenska M: High-resolution mapping of amplifications and deletions in pediatric osteosarcoma by use of CGH analysis of cDNA microarrays. Genes Chromosomes Cancer 2003, 38(3):215-225.
  • [12]Olshen AB, Venkatraman ES, Lucito R, Wigler M: Circular binary segmentation for the analysis of array-based DNA copy number data. Biostatistics 2004, 5(4):557-572.
  • [13]Van Wieringen WN, Van De Wiel MA, Ylstra B: Weighted clustering of called array CGH data. Biostatistics 2008, 9(3):484-500.
  • [14]Kresse SH, Ohnstad HO, Paulsen EB, Bjerkehagen B, Szuhai K, Serra M, Schaefer KL, Myklebost O, Meza-Zepeda LA: LSAMP, a novel candidate tumor suppressor gene in human osteosarcomas, identified by array comparative genomic hybridization. Genes Chromosomes Cancer 2009, 48(8):679-693.
  • [15]Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL: TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol 2013, 14(4):R36.
  • [16]Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B: Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 2008, 5(7):621-628.
  • [17]Chien AJ, Moore EC, Lonsdorf AS, Kulikauskas RM, Rothberg BG, Berger AJ, Major MB, Hwang ST, Rimm DL, Moon RT: Activated Wnt/beta-catenin signaling in melanoma is associated with decreased proliferation in patient tumors and a murine melanoma model. Proc Natl Acad Sci U S A 2009, 106(4):1193-1198.
  • [18]De Blasio A, Messina C, Santulli A, Mangano V, Di Leonardo E, D’Anneo A, Tesoriere G, Vento R: Differentiative pathway activated by 3-aminobenzamide, an inhibitor of PARP, in human osteosarcoma MG-63 cells. FEBS Lett 2005, 579(3):615-620.
  • [19]Gazitt Y, Kolaparthi V, Moncada K, Thomas C, Freeman J: Targeted therapy of human osteosarcoma with 17AAG or rapamycin: characterization of induced apoptosis and inhibition of mTOR and Akt/MAPK/Wnt pathways. Int J Oncol 2009, 34(2):551-561.
  • [20]Takayama S, Rogatsky I, Schwarcz LE, Darimont BD: The glucocorticoid receptor represses cyclin D1 by targeting the Tcf-beta-catenin complex. J Biol Chem 2006, 281(26):17856-17863.
  • [21]Matushansky I, Hernando E, Socci ND, Mills JE, Matos TA, Edgar MA, Singer S, Maki RG, Cordon-Cardo C: Derivation of sarcomas from mesenchymal stem cells via inactivation of the Wnt pathway. J Clin Invest 2007, 117(11):3248-3257.
  • [22]Gu Y, Pan Y, Meng B, Guan B, Fu K, Sun B, Zheng F: High levels of bcl-2 protein expression do not correlate with genetic abnormalities but predict worse prognosis in patients with lymphoblastic lymphoma. Tumour Biol 2013, 34(3):1441-1450.
  • [23]Liang S, Mu K, Wang Y, Zhou Z, Zhang J, Sheng Y, Zhang T: CyclinD1, a prominent prognostic marker for endometrial diseases. Diagn Pathol 2013, 8:138.
  • [24]Gregory CA, Singh H, Perry AS, Prockop DJ: The Wnt signaling inhibitor dickkopf-1 is required for reentry into the cell cycle of human adult stem cells from bone marrow. J Biol Chem 2003, 278(30):28067-28078.
  • [25]Daino K, Ugolin N, Altmeyer-Morel S, Guilly MN, Chevillard S: Gene expression profiling of alpha-radiation-induced rat osteosarcomas: identification of dysregulated genes involved in radiation-induced tumorigenesis of bone. Int J Cancer 2009, 125(3):612-620.
  • [26]Leow PCTQ, Ong ZY, Yang Z, Ee PL: Antitumor activity of natural compounds, curcumin and p KF118–310, as Wnt/β-catenin antagonists against human osteosarcoma cells. Invest New Drugs 2010, 28(6):766-782.
  文献评价指标  
  下载次数:57次 浏览次数:26次