期刊论文详细信息
BMC Medical Genomics
A 3-biomarker-panel predicts renal outcome in patients with proteinuric renal diseases
Michael Rudnicki3  Gert Mayer3  Bernd Mayer2  Suzie-Jane Braniff3  Johannes Leierer3  Irmgard Mühlberger2  Alexander Kainz1  Paul Perco2  Hannes Neuwirt3 
[1] Department of Internal Medicine III – Nephrology, KH Elisabethinen, Linz, Austria;Emergentec biodevelopment GmbH, Vienna, Austria;Department of Internal Medicine IV - Nephrology and Hypertension, Medical University Innsbruck, Anichstrasse 35, Innsbruck, 6020, Austria
关键词: Bioinformatics;    Prognosis;    Chronic kidney disease;    Biomarker;    Microarray;    Transcriptomics;    Histogenomics;   
Others  :  1090049
DOI  :  10.1186/s12920-014-0075-8
 received in 2014-06-22, accepted in 2014-12-17,  发布年份 2014
PDF
【 摘 要 】

Background

Clinical and histological parameters are valid prognostic markers in renal disease, although they may show considerable interindividual variability and sometimes limited prognostic value. Novel molecular markers and pathways have the potential to increase the predictive prognostic value of the so called “traditional markers”.

Methods

Transcriptomics profiles from laser-capture microdissected proximal tubular epithelial cells from routine kidney biopsies were correlated with a chronic renal damage index score (CREDI), an inflammation score (INSCO), and clinical parameters. We used data from 20 renal biopsies with various proteinuric renal diseases with a median follow-up of 49 months (discovery cohort). For validation we performed microarrays from whole kidney biopsies from a second cohort consisting of 16 patients with a median follow-up time of 28 months (validation cohort).

Results

562 genes correlated with the CREDI score and 285 genes correlated with the INSCO panel, respectively. 39 CREDI and 90 INSCO genes also correlated with serum creatinine at follow-up. After hierarchical clustering we identified 5 genes from the CREDI panel, and 10 genes from the INSCO panel, respectively, which showed kidney specific gene expression. After exclusion of genes, which correlated to each other by > 50% we identified VEGF-C from the CREDI panel and BMP7, THBS1, and TRIB1 from the INSCO panel. Traditional markers for chronic kidney disease progression and inflammation score predicted 44% of the serum creatinine variation at follow-up. VEGF-C did not further enhance the predictive value, but BMP7, THBS1 and TRIB1 together predicted 94% of the serum creatinine at follow up (p < 0.0001). The model was validated in a second cohort of patients yielding also a significant prediction of follow up creatinine (48%, p = 0.0115).

Conclusion

We identified and validated a panel of three genes in kidney biopsies which predicted serum creatinine at follow-up and therefore might serve as biomarkers for kidney disease progression.

【 授权许可】

   
2014 Neuwirt et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150128153749549.pdf 449KB PDF download
【 参考文献 】
  • [1]D’Amico G: Natural history of idiopathic IgA nephropathy and factors predictive of disease outcome. Semin Nephrol 2004, 24:179-196.
  • [2]Donadio JV, Bergstralh EJ, Grande JP, Rademcher DM: Proteinuria patterns and their association with subsequent end-stage renal disease in IgA nephropathy. Nephrol Dial Transplant 2002, 17:1197-1203.
  • [3]Ibels LS, Gyory AZ: IgA nephropathy: analysis of the natural history, important factors in the progression of renal disease, and a review of the literature. Medicine (Baltimore) 1994, 73:79-102.
  • [4]Nicholls KM, Fairley KF, Dowling JP, Kincaid-Smith P: The clinical course of mesangial IgA associated nephropathy in adults. Q J Med 1984, 53:227-250.
  • [5]Reich HN, Troyanov S, Scholey JW, Cattran DC: Remission of proteinuria improves prognosis in IgA nephropathy. J Am Soc Nephrol 2007, 18:3177-3183.
  • [6]Reich HN, Tritchler D, Cattran DC, Herzenberg AM, Eichinger F, Boucherot A, Henger A, Berthier CC, Nair V, Cohen CD, Scholey JW, Kretzler M: A molecular signature of proteinuria in glomerulonephritis. PLoS One 2010, 5:e13451.
  • [7]Bottinger EP, Bitzer M: TGF-beta signaling in renal disease. J Am Soc Nephrol 2002, 13:2600-2610.
  • [8]Rudnicki M, Perco P, Enrich J, Eder S, Heininger D, Bernthaler A, Wiesinger M, Sarkozi R, Noppert SJ, Schramek H, Mayer B, Oberbauer R, Mayer G: Hypoxia response and VEGF-A expression in human proximal tubular epithelial cells in stable and progressive renal disease.Lab Invest 2009, 89:337–346.
  • [9]Perco P, Kainz A, Wilflingseder J, Soleiman A, Mayer B, Oberbauer R: Histogenomics: association of gene expression patterns with histological parameters in kidney biopsies. Transplantation 2009, 87:290-295.
  • [10]Einecke G, Reeve J, Sis B, Mengel M, Hidalgo L, Famulski KS, Matas A, Kasiske B, Kaplan B, Halloran PF: A molecular classifier for predicting future graft loss in late kidney transplant biopsies. J Clin Invest 2010, 120:1862-1872.
  • [11]Sellares J, Reeve J, Loupy A, Mengel M, Sis B, Skene A, de Freitas DG, Kreepala C, Hidalgo LG, Famulski KS, Halloran PF: Molecular diagnosis of antibody-mediated rejection in human kidney transplants. Am J Transplant 2013, 13:971-983.
  • [12]Schmid H, Boucherot A, Yasuda Y, Henger A, Brunner B, Eichinger F, Nitsche A, Kiss E, Bleich M, Grone HJ, Nelson PJ, Schlondorff D, Cohen CD, Kretzler M: Modular activation of nuclear factor-kappaB transcriptional programs in human diabetic nephropathy. Diabetes 2006, 55:2993-3003.
  • [13]Mayer G: Capillary rarefaction, hypoxia, VEGF and angiogenesis in chronic renal disease. Nephrol Dial Transplant 2011, 26:1132-1137.
  • [14]Rudnicki M, Eder S, Perco P, Enrich J, Scheiber K, Koppelstatter C, Schratzberger G, Mayer B, Oberbauer R, Meyer TW, Mayer G: Gene expression profiles of human proximal tubular epithelial cells in proteinuric nephropathies. Kidney Int 2007, 71:325-335.
  • [15]Rudnicki M, Eder S, Schratzberger G, Mayer B, Meyer TW, Tonko M, Mayer G: Reliability of t7-based mRNA linear amplification validated by gene expression analysis of human kidney cells using cDNA microarrays. Nephron Exp Nephrol 2004, 97:e86-e95.
  • [16]Thomas PD, Campbell MJ, Kejariwal A, Mi H, Karlak B, Daverman R, Diemer K, Muruganujan A, Narechania A: PANTHER: a library of protein families and subfamilies indexed by function. Genome Res 2003, 13:2129-2141.
  • [17]Thomas PD, Kejariwal A, Guo N, Mi H, Campbell MJ, Muruganujan A, Lazareva-Ulitsky B: Applications for protein sequence-function evolution data: mRNA/protein expression analysis and coding SNP scoring tools. Nucleic Acids Res 2006, 34:W645-W650.
  • [18]Mi H, Dong Q, Muruganujan A, Gaudet P, Lewis S, Thomas PD: PANTHER version 7: improved phylogenetic trees, orthologs and collaboration with the Gene Ontology Consortium. Nucleic Acids Res 2010, 38:D204-D210.
  • [19]Efron B: Better bootstrap confidence intervals. J Am Stat Assoc 1987, 82:171-185.
  • [20]Youden WJ: Index for rating diagnostic tests. Cancer 1950, 3:32-35.
  • [21]Goumenos DS, Kalliakmani P, Tsakas S, Papachristou E, Vlachojannis JG: Growth factors and apoptosis-related protein expression in human crescentic nephritis. Med Sci Monit 2008, 14:BR243-BR248.
  • [22]Floege J, Eitner F, Alpers CE: A new look at platelet-derived growth factor in renal disease. J Am Soc Nephrol 2008, 19:12-23.
  • [23]Yeh YC, Wei WC, Wang YK, Lin SC, Sung JM, Tang MJ: Transforming growth factor-{beta}1 induces Smad3-dependent {beta}1 integrin gene expression in epithelial-to-mesenchymal transition during chronic tubulointerstitial fibrosis. Am J Pathol 2010, 177:1743-1754.
  • [24]Cho SG, Du Q, Huang S, Dong Z: Drp1 dephosphorylation in ATP depletion-induced mitochondrial injury and tubular cell apoptosis. Am J Physiol Renal Physiol 2010, 299:F199-F206.
  • [25]Granata S, Zaza G, Simone S, Villani G, Latorre D, Pontrelli P, Carella M, Schena FP, Grandaliano G, Pertosa G: Mitochondrial dysregulation and oxidative stress in patients with chronic kidney disease. BMC Genomics 2009, 10:388. BioMed Central Full Text
  • [26]Weinberg JM: Mitochondrial biogenesis in kidney disease. J Am Soc Nephrol 2011, 22:431-436.
  • [27]Anders HJ, Ryu M: Renal microenvironments and macrophage phenotypes determine progression or resolution of renal inflammation and fibrosis.Kidney Int 2011, 80:915–925.
  • [28]Lee SB, Kalluri R: Mechanistic connection between inflammation and fibrosis.Kidney Int Suppl 2010, S22–S26.
  • [29]Levey AS, Bosch JP, Lewis JB, Greene T, Rogers N, Roth D: A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. modification of diet in Renal Disease Study Group. Ann Intern Med 1999, 130:461-470.
  • [30]Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, Feldman HI, Kusek JW, Eggers P, Van Lente F, Greene T, Coresh J: A new equation to estimate glomerular filtration rate. Ann Intern Med 2009, 150:604-612.
  • [31]Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease.Kidney Int Suppl 2013, 3:1–150.
  • [32]Steubl D, Hettwer S, Vrijbloed W, Dahinden P, Wolf P, Luppa P, Wagner CA, Renders L, Heemann U, Roos M: C-terminal agrin fragment–a new fast biomarker for kidney function in renal transplant recipients. Am J Nephrol 2013, 38:501-508.
  • [33]Zubowska M, Wyka K, Fendler W, Mlynarski W, Zalewska-Szewczyk B: Interleukin 18 as a marker of chronic nephropathy in children after anticancer treatment. Dis Markers 2013, 35:811-818.
  • [34]Kiss-Toth E, Bagstaff SM, Sung HY, Jozsa V, Dempsey C, Caunt JC, Oxley KM, Wyllie DH, Polgar T, Harte M, O'Neill L A, Qwarnstrom EE, Dower SK: Human tribbles, a protein family controlling mitogen-activated protein kinase cascades. J Biol Chem 2004, 279:42703-42708.
  • [35]Ashton-Chess J, Giral M, Mengel M, Renaudin K, Foucher Y, Gwinner W, Braud C, Dugast E, Quillard T, Thebault P, Chiffoleau E, Braudeau C, Charreau B, Soulillou JP, Brouard S: Tribbles-1 as a novel biomarker of chronic antibody-mediated rejection. J Am Soc Nephrol 2008, 19:1116-1127.
  • [36]Divers J, Palmer ND, Lu L, Langefeld CD, Rocco MV, Hicks PJ, Murea M, Ma L, Bowden DW, Freedman BI: Gene-gene interactions in APOL1-associated nephropathy.Nephrol Dial Transplant 2013, 29:587–594.
  • [37]Tomita M, Asada M, Asada N, Nakamura J, Oguchi A, Higashi AY, Endo S, Robertson E, Kimura T, Kita T, Economides AN, Kreidberg J, Yanagita M: Bmp7 maintains undifferentiated kidney progenitor population and determines nephron numbers at birth. PLoS One 2013, 8:e73554.
  • [38]Xu Y, Wan J, Jiang D, Wu X: BMP-7 counteracts TGF-beta1-induced epithelial-to-mesenchymal transition in human renal proximal tubular epithelial cells. J Nephrol 2009, 22:403-410.
  • [39]Xu YF, Wan JX, Jiang DW: Effects of bone morphogenic protein-7 on transdifferentiation and the expression of connective tissue growth factor of human renal tubular epithelial cells induced by transforming growth factor-beta1. Zhonghua Yi Xue Za Zhi 2009, 89:1639-1644.
  • [40]Dudas PL, Argentieri RL, Farrell FX: BMP-7 fails to attenuate TGF-beta1-induced epithelial-to-mesenchymal transition in human proximal tubule epithelial cells. Nephrol Dial Transplant 2009, 24:1406-1416.
  • [41]Gomez-Alamillo C, Ramos-Barron MA, Benito-Hernandez A, Rodrigo E, Ruiz JC, Agueros C, Sanchez M, Arias M: Relation of urinary gene expression of epithelial-mesenchymal transition markers with initial events and 1-year kidney graft function. Transplant Proc 2012, 44:2573-2576.
  • [42]Denizli N, Azak A, Sakaci M, Huddam B, Kocak G, Akdogan MF, Demirci R, Gucun M, Ortabozkoyun L, Fidan Y, Akdag I, Duranay M: Bone morphogenetic protein-7 and disease progression in renal amyloidosis patients. Ren Fail 2013, 35:1112-1115.
  • [43]Hugo C, Shankland SJ, Pichler RH, Couser WG, Johnson RJ: Thrombospondin 1 precedes and predicts the development of tubulointerstitial fibrosis in glomerular disease in the rat. Kidney Int 1998, 53:302-311.
  • [44]Daniel C, Schaub K, Amann K, Lawler J, Hugo C: Thrombospondin-1 is an endogenous activator of TGF-beta in experimental diabetic nephropathy in vivo. Diabetes 2007, 56:2982-2989.
  • [45]Daniel C, Wiede J, Krutzsch HC, Ribeiro SM, Roberts DD, Murphy-Ullrich JE, Hugo C: Thrombospondin-1 is a major activator of TGF-beta in fibrotic renal disease in the rat in vivo. Kidney Int 2004, 65:459-468.
  • [46]Cui W, Maimaitiyiming H, Qi X, Norman H, Wang S: Thrombospondin 1 mediates renal dysfunction in a mouse model of high-fat diet-induced obesity. Am J Physiol Renal Physiol 2013, 305:F871-F880.
  • [47]Sun D, Ma Y, Han H, Yin Z, Liu C, Feng J, Zhou X, Li X, Xiao A, Yu R: Thrombospondin-1 short hairpin RNA suppresses tubulointerstitial fibrosis in the kidney of ureteral obstruction by ameliorating peritubular capillary injury. Kidney Blood Press Res 2012, 35:35-47.
  文献评价指标  
  下载次数:6次 浏览次数:5次