期刊论文详细信息
BMC Medicine
Containing the accidental laboratory escape of potential pandemic influenza viruses
Alessandro Vespignani2  Laura Fumanelli3  Marco Ajelli1  Stefano Merler1 
[1] Bruno Kessler Foundation, Trento, Italy;Institute for Quantitative Social Sciences at Harvard University, Cambridge, MA 02138, USA;Department of Mathematics, University of Trento, Trento, Italy
关键词: Contact tracing;    Outbreak containment;    Agent-based model;    Influenza;    BSL Laboratory;   
Others  :  855310
DOI  :  10.1186/1741-7015-11-252
 received in 2013-07-10, accepted in 2013-11-07,  发布年份 2013
PDF
【 摘 要 】

Background

The recent work on the modified H5N1 has stirred an intense debate on the risk associated with the accidental release from biosafety laboratory of potential pandemic pathogens. Here, we assess the risk that the accidental escape of a novel transmissible influenza strain would not be contained in the local community.

Methods

We develop here a detailed agent-based model that specifically considers laboratory workers and their contacts in microsimulations of the epidemic onset. We consider the following non-pharmaceutical interventions: isolation of the laboratory, laboratory workers’ household quarantine, contact tracing of cases and subsequent household quarantine of identified secondary cases, and school and workplace closure both preventive and reactive.

Results

Model simulations suggest that there is a non-negligible probability (5% to 15%), strongly dependent on reproduction number and probability of developing clinical symptoms, that the escape event is not detected at all. We find that the containment depends on the timely implementation of non-pharmaceutical interventions and contact tracing and it may be effective (>90% probability per event) only for pathogens with moderate transmissibility (reproductive number no larger than R0 = 1.5). Containment depends on population density and structure as well, with a probability of giving rise to a global event that is three to five times lower in rural areas.

Conclusions

Results suggest that controllability of escape events is not guaranteed and, given the rapid increase of biosafety laboratories worldwide, this poses a serious threat to human health. Our findings may be relevant to policy makers when designing adequate preparedness plans and may have important implications for determining the location of new biosafety laboratories worldwide.

【 授权许可】

   
2013 Merler et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140722032600568.pdf 2078KB PDF download
72KB Image download
76KB Image download
79KB Image download
72KB Image download
59KB Image download
60KB Image download
86KB Image download
44KB Image download
【 图 表 】

【 参考文献 】
  • [1]Alberts B: H5N1. Science 2012, 336:1521.
  • [2]Fauci AS, Collins FS: Benefits and risks of influenza research: lessons learned. Science 2012, 336:1522-1523.
  • [3]Herfst S, Schrauwen EJA, Linster M, Chutinimitkul S, de Wit E, Munster VJ, Sorrell EM, Bestebroer TM, Burke DF, Smith DJ, Rimmelzwaan GF, Osterhaus ADME, Fouchier RAM: Airborne transmission of influenza A/H5N1 virus between ferrets. Science 2012, 336:1534-1541.
  • [4]Imai M, Watanabe T, Hatta M, Das SC, Ozawa M, Shinya K, Zhong G, Hanson A, Katsura H, Watanabe S, Li C, Kawakami E, Yamada S, Kiso M, Suzuki Y, Maher EA, Neumann G, Kawaoka Y: Experimental adaptation of an influenza H5 HA confers respiratory droplet transmission to a reassortant H5HA/H1N1 virus in ferrets. Nature 2012, 486:420-428.
  • [5]Federation of American Scientists: Biosafety level 4 Labs and BSL information. http://www.fas.org/programs/bio/biosafetylevels.html webcite
  • [6]United States Government Accountability Office: High-containment Laboratories National Strategy for Oversight Is Needed. Report to Congressional Requesters. Washington, DC: United States Government Accountability Office; 2009.
  • [7]Henkel RD, Miller T, Weyant RS: Monitoring select agent theft, loss and release reports in the United States - 2004–2010. Appl Biosaf 2012, 17:171-180.
  • [8]Belgian Biosafety Server: Laboratory-acquired infections: references. http://www.biosafety.be/CU/LAI/Recent_LAI.html webcite
  • [9]Lipsitch M, Plotkin JB, Simonsen L, Bloom B: Evolution, safety, and highly pathogenic influenza viruses. Science 2012, 336:1529-1531.
  • [10]Lipsitch M, Bloom BR: Rethinking biosafety in research on potential pandemic pathogens. MBio 2012, 3:e0036012.
  • [11]Klotz LC, Sylvester EJ: The unacceptable risks of a man-made pandemic. http://www.thebulletin.org/unacceptable-risks-man-made-pandemic webcite
  • [12]Ajelli M, Merler S: Transmission potential and design of adequate control measures for Marburg hemorrhagic fever. PLoS One 2012, 7:e50948.
  • [13]Chowell G, Hengartner NW, Castillo-Chavez C, Fenimore PW, Hyman JM: The basic reproductive number of Ebola and the effects of public health measures: the cases of Congo and Uganda. J Theor Biol 2004, 229:119-126.
  • [14]Lim PL, Kurup A, Gopalakrishna G, Chan KP, Wong CW, Ng LC, Se-Thoe SY, Oon L, Bai X, Stanton LW, Ruan Y, Miller LD, Vega VB, James L, Ooi PL, Kai CS, Olsen SJ, Ang B, Leo YS: Laboratory-acquired severe acute respiratory syndrome. N Engl J Med 2004, 350:1740-1745.
  • [15]Moran-Mendoza O, Marion SA, Elwood K, Patrick DM, FitzGerald JM: Tuberculin skin test size and risk of tuberculosis development:a large population-based study in contacts. Int J Tubercul Lung Dis 2007, 11:1014-1020.
  • [16]Davidow AL, Mangura BT, Wolman MS, Bur S, Reves R, Thompson V, Ford J, Reichler MR: Workplace contact investigation in the United States. Int J Tubercul Lung Dis 2003, 7:S446-S452.
  • [17]Marks SM, Taylor Z, Qualls NL, Shrestha-Kuwahara RJ, Wilce MA, Nguyen CH: Outcomes of contact investigation of infectious tuberculosis patients. Am J Respir Crit Care Med 2000, 162:2033-2038.
  • [18]Goddard NL: SARS update: additional cases being investigated in Beijing, China. Euro Surveill 2004, 8:pii=2454.
  • [19]Merler S, Ajelli M, Pugliese A, Ferguson NM: Determinants of the spatiotemporal dynamics of the 2009 H1N1 pandemic in Europe: implications for real-time modelling. PLoS Comput Biol 2011, 7:e1002205.
  • [20]Eames KT, Tilston NL, Brooks-Pollock E, Edmunds WJ: Measured dynamic social contact patterns explain the spread of H1N1v influenza. PLoS Comput Biol 2012, 8:e1002425.
  • [21]Poletti P, Ajelli M, Merler S: The effect of risk perception on the 2009 H1N1 pandemic influenza dynamics. PLoS One 2011, 6:e16460.
  • [22]Dorigatti I, Cauchemez S, Pugliese A, Ferguson NM: A new approach to characterising infectious disease transmission dynamics from sentinel surveillance: application to the Italian 2009–2010 A/H1N1 influenza pandemic. Epidemics 2012, 4:9-21.
  • [23]Fraser C, Donnelly CA, Cauchemez S, Hanage WP, Van Kerkhove MD, Hollingsworth TD, Griffin J, Baggaley RF, Jenkins HE, Lyons EJ, Jombart T, Hinsley WR, Grassly NC, Balloux F, Ghani AC, Ferguson NM, Rambaut A, Pybus OG, Lopez-Gatell H, Alpuche-Aranda CM, Chapela IB, Zavala EP, Guevara DM, Checchi F, Garcia E, Hugonnet S, Roth C, WHO Rapid Pandemic Assessment Collaboration: Pandemic potential of a strain of influenza A (H1N1): early findings. Science 2009, 324:1557-1561.
  • [24]Balcan D, Hu H, Goncalves B, Bajardi P, Poletto C, Ramasco JJ, Paolotti D, Perra N, Tizzoni M, den Broeck , Colizza V, Vespignani A: Seasonal transmission potential and activity peaks of the new influenza A(H1N1): a Monte Carlo likelihood analysis based on human mobility. BMC Med 2009, 7:45. BioMed Central Full Text
  • [25]Ferguson NM, Cummings DAT, Cauchemez S, Fraser C, Riley S, Meeyai A, Iamsirithaworn S, Burke DS: Strategies for containing an emerging influenza pandemic in Southeast Asia. Nature 2005, 437:209-214.
  • [26]Yang Y, Sugimoto JD, Halloran ME, Basta NE, Chao DL, Matrajt L, Potter G, Kenah E, Longini IM: The transmissibility and control of pandemic influenza A (H1N1) virus. Science 2009, 326:729-733.
  • [27]White LF, Wallinga J, Finelli L, Reed C, Riley S, Lipsitch M, Pagano M: Estimation of the reproductive number and the serial interval in early phase of the 2009 influenza A/H1N1 pandemic in the USA. Influenza Other Respir Viruses 2009, 3:267-276.
  • [28]Lessler J, Reich NG, Cummings DA: Outbreak of 2009 pandemic influenza A (H1N1) at a New York City school. N Engl J Med 2009, 361:2628-2636.
  • [29]Cowling BJ, Chan KH, Fang VJ, Lau LL, So HC, Fung RO, Ma ES, Kwong AS, Chan CW, Tsui WW, Ngai HY, Chu DW, Lee PW, Chiu MC, Leung GM, Peiris JS: Comparative epidemiology of pandemic and seasonal influenza A in households. N Engl J Med 2010, 362:2175-2184.
  • [30]Anderson RM, Fraser C, Ghani AC, Donnelly CA, Riley S, Ferguson NM, Leung GM, Lam TH, Hedley AJ: Epidemiology, transmission dynamics and control of SARS: the 2002–2003 epidemic. Philos Trans R Soc Lon B Biol Sci 2004, 359:1091-1105.
  • [31]Merler S, Ajelli M: The role of population heterogeneity and human mobility in the spread of pandemic influenza. Proc R Soc B 2010, 277:557-565.
  • [32]Ajelli M, Goncalves B, Balcan D, Colizza V, Hu H, Ramasco JJ, Merler S, Vespignani A: Comparing large-scale computational approaches to epidemic modeling: agent-based versus structured metapopulation models. BMC Infect Dis 2010, 10:190. BioMed Central Full Text
  • [33]Statistical Office of the European Commission (Eurostat): Database by themes 2011. http://epp.eurostat.ec.europa.eu/portal/page/portal/statistics/search_database webcite
  • [34]Ferguson NM, Cummings DAT, Fraser C, Cajka JC, Cooley PC, Burke DS: Strategies for mitigating an influenza pandemic. Nature 2006, 442:448-452.
  • [35]Cauchemez S, Valleron AJ, Boëlle PY, Flahault A, Ferguson NM: Estimating the impact of school closure on influenza transmission from Sentinel data. Nature 2008, 452:750-754.
  • [36]Halloran ME, Ferguson NM, Eubank S, Longini IM Jr, Cummings DA, Lewis B, Xu S, Fraser C, Vullikanti A, Germann TC, Wagener D, Beckman R, Kadau K, Barrett C, Macken CA, Burke DS, Cooley P: Modeling targeted layered containment of an influenza pandemic in the United States. Proc Natl Acad Sci USA 2008, 105:4639-4644.
  • [37]Chao DL, Halloran ME, Obenchain VJ, Longini IM: FluTE, a publicly available stochastic influenza epidemic simulation model. PLoS Comput Biol 2010, 6:e1000656.
  • [38]Cauchemez S, Bhattarai A, Marchbanks TL, Fagan RP, Ostroff S, Ferguson NM, Swerdlow D: Pennsylvania H1N1 working group: Role of social networks in shaping disease transmission during a community outbreak of 2009 H1N1 pandemic influenza. Proc Natl Acad Sci USA 2011, 108:2825-2830.
  • [39]Mills CE, Robins JM, Lipsitch M: Transmissibility of 1918 pandemic influenza. Nature 2004, 432:904-906.
  • [40]Viboud C, Tam T, Fleming D, Handel A, Miller MA, Simonsen L: Transmissibility and mortality impact of epidemic and pandemic influenza, with emphasis on the unusually deadly 1951 epidemic. Vaccine 2006, 24:6701-6707.
  • [41]Pourbohloul B, Ahued A, Davoudi B, Meza R, Meyers LA, Skowronski DM, Villaseñor I, Galván F, Cravioto P, Earn DJ, Dushoff J, Fisman D, Edmunds WJ, Hupert N, Scarpino SV, Trujillo J, Lutzow M, Morales J, Contreras A, Chávez C, Patrick DM, Brunham RC: Initial human transmission dynamics of the pandemic (H1N1) 2009 virus in North America. Influenza Other Respir Viruses 2009, 3:215-222.
  • [42]Chowell G, Echevarria-Zuno S, Viboud C, Simonsen L, Tamerius J, Miller MA, Borja-Aburto VH: Characterizing the epidemiology of the 2009 influenza A/H1N1 pandemic in Mexico. PLoS Med 2011, 8:e1000436.
  • [43]Chao DL, Matrajt L, Basta NE, Sugimoto JD, Dean B, Bagwell DA, Oiulfstad B, Halloran ME, Longini IM: Planning for the control of pandemic influenza A (H1N1) in Los Angeles County and the United States. Am J Epidemiol 2011, 173:1121-1130.
  • [44]Tizzoni M, Bajardi P, Poletto C, Ramasco JJ, Balcan D, Gonçalves B, Perra N, Colizza V, Vespignani A: Real-time numerical forecast of global epidemic spreading: case study of 2009 A/H1N1pdm. BMC Med 2012, 10:165. BioMed Central Full Text
  • [45]Balcan D, Colizza V, Gonçalves B, Hu H, Ramasco JJ, Vespignani A: Multiscale mobility networks and the spatial spreading of infectious diseases. Proc Natl Acad Sci USA 2009, 106:21484-21489.
  • [46]Longini IM, Halloran ME, Nizam A, Yang Y: Containing pandemic influenza with antiviral agents. Am J Epidemiol 2004, 159:623-633.
  • [47]Longini IM, Nizam A, Xu S, Ungchusak K, Hanshaoworakul W, Cummings DAT, Halloran ME: Containing pandemic influenza at the source. Science 2005, 309:1083-1087.
  • [48]Ciofi degli Atti ML, Merler S, Rizzo C, Ajelli M, Massari M, Manfredi P, Furlanello C, Scalia Tomba G, Iannelli M: Mitigation measures for pandemic influenza in Italy: an individual based model considering different scenarios. PLoS One 2008, 3:e1790.
  • [49]Merler S, Ajelli M, Rizzo C: Age-prioritized use of antivirals during an influenza pandemic. BMC Infect Dis 2009, 9:117. BioMed Central Full Text
  • [50]Black AJ, House T, Keeling M, Ross J: Epidemiological consequences of household-based antiviral prophylaxis for pandemic influenza. J R Soc Interface 2013, 10:20121019.
  • [51]National Research Council: Protecting the Frontline in Biodefense Research: The Special Immunizations Program. Washington, DC: The National Academies Press; 2011.
  • [52]Weinstein R, Singh K: Laboratory-acquired infections. Clin Infect Dis 2009, 49:142-147.
  文献评价指标  
  下载次数:9次 浏览次数:5次