期刊论文详细信息
BMC Pulmonary Medicine
Visualisation of time-varying respiratory system elastance in experimental ARDS animal models
Thomas Desaive3  J Geoffrey Chase4  Nathalie Janssen2  Bernard Lambermont2  Geoffrey M Shaw1  Christopher Pretty4  Yeong Shiong Chiew4  Erwin J van Drunen4 
[1] Christchurch Hospital, Christchurch 8011, New Zealand;University Hospital of Liège, Liège, Belgium;University of Liège, Liège, Belgium;University of Canterbury, Christchurch 8041, New Zealand
关键词: Monitoring;    ARDS;    Model-based methods;    Time-varying elastance;    PEEP;    Mechanical ventilation;   
Others  :  866514
DOI  :  10.1186/1471-2466-14-33
 received in 2013-07-04, accepted in 2014-02-19,  发布年份 2014
PDF
【 摘 要 】

Background

Patients with acute respiratory distress syndrome (ARDS) risk lung collapse, severely altering the breath-to-breath respiratory mechanics. Model-based estimation of respiratory mechanics characterising patient-specific condition and response to treatment may be used to guide mechanical ventilation (MV). This study presents a model-based approach to monitor time-varying patient-ventilator interaction to guide positive end expiratory pressure (PEEP) selection.

Methods

The single compartment lung model was extended to monitor dynamic time-varying respiratory system elastance, Edrs, within each breathing cycle. Two separate animal models were considered, each consisting of three fully sedated pure pietrain piglets (oleic acid ARDS and lavage ARDS). A staircase recruitment manoeuvre was performed on all six subjects after ARDS was induced. The Edrs was mapped across each breathing cycle for each subject.

Results

Six time-varying, breath-specific Edrs maps were generated, one for each subject. Each Edrs map shows the subject-specific response to mechanical ventilation (MV), indicating the need for a model-based approach to guide MV. This method of visualisation provides high resolution insight into the time-varying respiratory mechanics to aid clinical decision making. Using the Edrs maps, minimal time-varying elastance was identified, which can be used to select optimal PEEP.

Conclusions

Real-time continuous monitoring of in-breath mechanics provides further insight into lung physiology. Therefore, there is potential for this new monitoring method to aid clinicians in guiding MV treatment. These are the first such maps generated and they thus show unique results in high resolution. The model is limited to a constant respiratory resistance throughout inspiration which may not be valid in some cases. However, trends match clinical expectation and the results highlight both the subject-specificity of the model, as well as significant inter-subject variability.

【 授权许可】

   
2014 van Drunen et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140727074204671.pdf 3291KB PDF download
171KB Image download
153KB Image download
162KB Image download
183KB Image download
148KB Image download
20150306042825893.pdf 1933KB PDF download
【 图 表 】

【 参考文献 】
  • [1]The ARDS Definition Task Force A: Acute respiratory distress syndrome: the berlin definition. JAMA 2012, 307(23):2526-2533.
  • [2]Gattinoni L, Pesenti A: The concept of “baby lung”. Intensive Care Med 2005, 31(6):776-784.
  • [3]Amato MBP, Barbas CSV, Medeiros DM, Magaldi RB, Schettino GP, Lorenzi-Filho G, Kairalla RA, Deheinzelin D, Munoz C, Oliveira R, Takagaki TY, Carvalho CRR: Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med 1998, 338(6):347-354.
  • [4]The Acute Respiratory Distress Syndrome Network: Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 2000, 342(18):1301-1308.
  • [5]McCann UG, Schiller HJ, Carney DE, Gatto LA, Steinberg JM, Nieman GF: Visual validation of the mechanical stabilizing effects of positive end-expiratory pressure at the alveolar level. J Surg Res 2001, 99(2):335-342.
  • [6]Halter JM, Steinberg JM, Schiller HJ, DaSilva M, Gatto LA, Landas S, Nieman GF: Positive End-expiratory pressure after a recruitment maneuver prevents both alveolar collapse and recruitment/derecruitment. Am J Respir Crit Care Med 2003, 167(12):1620-1626.
  • [7]Gattinoni L, Carlesso E, Brazzi L, Caironi P: Positive end-expiratory pressure. Curr Opin Crit Care 2010, 16(1):39-44.
  • [8]Lauzon AM, Bates JH: Estimation of time-varying respiratory mechanical parameters by recursive least squares. J Appl Physiol 1991, 71(3):1159-1165.
  • [9]Sundaresan A, Yuta T, Hann CE, Geoffrey Chase J, Shaw GM: A minimal model of lung mechanics and model-based markers for optimizing ventilator treatment in ARDS patients. Comput Methods Programs Biomed 2009, 95(2):166-180.
  • [10]Ma B, Bates J: Modeling the complex dynamics of derecruitment in the lung. Ann Biomed Eng 2010, 38(11):3466-3477.
  • [11]Sundaresan A, Chase JG: Positive end expiratory pressure in patients with acute respiratory distress syndrome - The past, present and future. Biomed Signal Process Control 2011, 7(2):93-103.
  • [12]Carvalho A, Jandre F, Pino A, Bozza F, Salluh J, Rodrigues R, Ascoli F, Giannella-Neto A: Positive end-expiratory pressure at minimal respiratory elastance represents the best compromise between mechanical stress and lung aeration in oleic acid induced lung injury. Crit Care 2007, 11(4):R86. BioMed Central Full Text
  • [13]Lucangelo U, Bernabè F, Blanch L: Lung mechanics at the bedside: make it simple. Curr Opin Crit Care 2007, 13(1):64-72.
  • [14]Suarez-Sipmann F, Bohm SH, Tusman G, Pesch T, Thamm O, Reissmann H, Reske A, Magnusson A, Hedenstierna G: Use of dynamic compliance for open lung positive end-expiratory pressure titration in an experimental study. Crit Care Med 2007, 35:214-221.
  • [15]Lambermont B, Ghuysen A, Janssen N, Morimont P, Hartstein G, Gerard P, D’Orio V: Comparison of functional residual capacity and static compliance of the respiratory system during a positive end-expiratory pressure (PEEP) ramp procedure in an experimental model of acute respiratory distress syndrome. Crit Care 2008, 12(4):R91. BioMed Central Full Text
  • [16]Brochard L, Martin G, Blanch L, Pelosi P, Belda FJ, Jubran A, Gattinoni L, Mancebo J, Ranieri VM, Richard J-C, Gommers D, Vieillard-Baron A, Pesenti A, Jaber S, Stenqvist O, Vincent J-L: Clinical review: Respiratory monitoring in the ICU - a consensus of 16. Crit Care 2012, 16(2):219. BioMed Central Full Text
  • [17]Chiew YS, Chase JG, Shaw G, Sundaresan A, Desaive T: Model-based PEEP optimisation in mechanical ventilation. Biomed Eng Online 2011, 10(1):111. BioMed Central Full Text
  • [18]Zhao Z, Guttmann J, Moller K: Adaptive Slice Method: a new method to determine volume dependent dynamic respiratory system mechanics. Physiol Meas 2012, 33(1):51-64.
  • [19]Schranz C, Becher T, Schadler D, Weiler N, Moeller K: Model-based ventialtor settings in pressure controlled ventilation. In Congress for the German Swiss and Austrian Society for Biomedical Engineering (BMT2013). Graz, Austria: Springer; 2013.
  • [20]Esquinas Rodriguez A, Papadakos P, Carron M, Cosentini R, Chiumello D: Clinical review: helmet and non-invasive mechanical ventilation in critically ill patients. Crit Care 2013, 17(2):223. BioMed Central Full Text
  • [21]Bates JHT: Lung Mechanics: an inverse modeling approach. United States of America, New York: Cambridge University Press; 2009.
  • [22]Hann CE, Chase JG, Lin J, Lotz T, Doran CV, Shaw GM: Integral-based parameter identification for long-term dynamic verification of a glucose-insulin system model. Comput Methods Programs Biomed 2005, 77(3):259-270.
  • [23]Mols G, Kessler V, Benzing A, Lichtwarck‒Aschoff M, Geiger K, Guttmann J: Is pulmonary resistance constant, within the range of tidal volume ventilation, in patients with ARDS? Br J Anaesth 2001, 86(2):176-182.
  • [24]Chiew YS, Chase JG, Lambermont B, Janssen N, Schranz C, Moeller K, Shaw G, Desaive T: Physiological relevance and performance of a minimal lung model - an experimental study in healthy and acute respiratory distress syndrome model piglets. BMC Pulmonary Medicine 2012, 12(1):59. BioMed Central Full Text
  • [25]Ballard-Croft C, Wang D, Sumpter LR, Zhou X, Zwischenberger JB: Large-animal models of acute respiratory distress syndrome. Ann Thorac Surg 2012, 93(4):1331-1339.
  • [26]Hodgson CL, Tuxen DV, Bailey MJ, Holland AE, Keating JL, Pilcher D, Thomson KR, Varma D: A positive response to a recruitment maneuver with PEEP titration in patients with ARDS, regardless of transient oxygen desaturation during the maneuver. J Intensive Care Med 2011, 26(1):41-49.
  • [27]Bates JHT, Irvin CG: Time dependence of recruitment and derecruitment in the lung: a theoretical model. J Appl Physiol 2002, 93(2):705-713.
  • [28]Albert SP, DiRocco J, Allen GB, Bates JHT, Lafollette R, Kubiak BD, Fischer J, Maroney S, Nieman GF: The role of time and pressure on alveolar recruitment. J Appl Physiol 2009, 106(3):757-765.
  • [29]Pelosi P, Goldner M, McKibben A, Adams A, Eccher G, Caironi P, Losappio S, Gattinoni L, Marini JJ: Recruitment and derecruitment during acute respiratory failure: an experimental study. Am J Respir Crit Care Med 2001, 164:122-130.
  • [30]Barbas CSV, de Matos GFJ, Pincelli MP, da Rosa Borges E, Antunes T, de Barros JM, Okamoto V, Borges JB, Amato MBP, Ribeiro de Carvalho CR: Mechanical ventilation in acute respiratory failure: recruitment and high positive end-expiratory pressure are necessary. Curr Opin Crit Care 2005, 11(1):18-28.
  • [31]Ganzert S, Moller K, Steinmann D, Schumann S, Guttmann J: Pressure-dependent stress relaxation in acute respiratory distress syndrome and healthy lungs: an investigation based on a viscoelastic model. Crit Care 2009, 13(6):R199. BioMed Central Full Text
  • [32]Andreassen S, Steimle KL, Mogensen ML, Serna JB, Rees S, Karbing DS: The effect of tissue elastic properties and surfactant on alveolar stability. J Appl Physiol 2010, 109(5):1369-1377.
  • [33]Crotti S, Mascheroni D, Caironi P, Pelosi P, Ronzoni G, Mondino M, Marini JJ, Gattinoni L: Recruitment and derecruitment during acute respiratory failure. A clinical study. Am J Respir Crit Care Med 2001, 164(1):131-140.
  • [34]Zhao Z, Steinmann D, Frerichs I, Guttmann J, Moller K: PEEP titration guided by ventilation homogeneity: a feasibility study using electrical impedance tomography. Crit Care 2010, 14:R8. BioMed Central Full Text
  • [35]Hedenstierna G, Rothen HU: Atelectasis formation during anesthesia: causes and measures to prevent it. J Clin Monit Comput 2000, 16:329-335.
  • [36]Briel M, Meade M, Mercat A, Brower RG, Talmor D, Walter SD, Slutsky AS, Pullenayegum E, Zhou Q, Cook D, Brochard L, Richard J-CM, Lamontagne F, Bhatnagar N, Stewart TE, Guyatt G: Higher vs lower positive end-expiratory pressure in patients with acute lung injury and acute respiratory distress syndrome: Systematic review and meta-analysis. JAMA 2010, 303(9):865-873.
  • [37]Mercat A, Richard J-CM, Vielle B, Jaber S, Osman D, Diehl J-L, Lefrant J-Y, Prat G, Richecoeur J, Nieszkowska A, Gervais C, Baudot J, Bouadma L, Brochard L, Expiratory Pressure Study Group (Express): Positive end-expiratory pressure setting in adults with acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. JAMA 2008, 299(6):646-655.
  • [38]Huh J, Jung H, Choi H, Hong S-B, Lim C-M, Koh Y: Efficacy of positive end-expiratory pressure titration after the alveolar recruitment manoeuvre in patients with acute respiratory distress syndrome. Crit Care 2009, 13(1):R22. BioMed Central Full Text
  • [39]Suarez-Sipmann F, Bohm S: Recruit the lung before titrating the right positive end-expiratory pressure to protect it. Crit Care 2009, 13(3):134. BioMed Central Full Text
  • [40]Malbouisson LM, Muller J-C, Constantin J-M, Lu QIN, Puybasset L, Rouby J-J, the CTSASG: Computed tomography assessment of positive end-expiratory pressure-induced alveolar recruitment in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med 2001, 163(6):1444-1450.
  • [41]Zhao Z, Steinmann D, Muller-Zivkovic D, Martin J, Frerichs I, Guttmann J, Moller K: A lung area estimation method for analysis of ventilation inhomogeneity based on electrical impedance tomography. J Xray Sci Technol 2010, 18:171-182.
  • [42]Zhao Z, Moller K, Steinmann D, Frerichs I, Guttmann J: Evaluation of an electrical impedance tomography-based global inhomogeneity index for pulmonary ventilation distribution. Intensive Care Med 2009, 35:1900-1906.
  文献评价指标  
  下载次数:81次 浏览次数:35次