期刊论文详细信息
BMC Cancer
Met receptor-induced Grb2 or Shc signals both promote transformation of intestinal epithelial cells, albeit they are required for distinct oncogenic functions
Véronique Pomerleau1  Mélissa Landry1  Jimmy Bernier1  Pierre H Vachon1  Caroline Saucier1 
[1] Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3201, rue Jean-Mignault, Sherbrooke, Quebec J1E 4K8, Canada
关键词: Colorectal cancer;    PI3K;    MAPK;    Anoikis;    Proliferation;    Transformation;    Intestinal epithelial cell;    Met;    Shc;    Grb2;    Receptor tyrosine kinase;   
Others  :  858917
DOI  :  10.1186/1471-2407-14-240
 received in 2013-11-08, accepted in 2014-03-31,  发布年份 2014
PDF
【 摘 要 】

Background

Deregulation of receptor tyrosine kinases (RTK) contributes to the initiation and progression of intestinal-derived epithelial cancers, including colorectal cancer (CRC). However, the roles of the proximal signaling molecules engaged by RTKs in different oncogenic functions of CRC remain unclear.

Methods

Herein, the functional impact of expressing variant forms of the oncogenic Met receptor (Tpr-Met) that selectively recruit the adaptor proteins Grb2 or Shc was investigated in a model derived from normal intestinal epithelial cells (IEC-6). An RNA interference (RNAi) approach was used to define the requirement of Grb2 or Shc in Tpr-Met-transformed IEC-6 cells. Since Grb2 and Shc couple RTKs to the activation of the Ras/MEK/Erk and PI3K/Akt pathways, Erk and Akt phosphorylation/activation states were monitored in transformed IEC-6 cells, and a pharmacological approach was employed to provide insights into the roles of these pathways in oncogenic processes evoked by activated Met, and downstream of Grb2 and Shc.

Results

We show, for the first time, that constitutive activation of either Grb2 or Shc signals in IEC-6 cells, promotes morphological transformation associated with down-regulation of E-cadherin, as well as increased cell growth, loss of growth contact inhibition, anchorage-independent growth, and resistance to serum deprivation and anoikis. Oncogenic activation of Met was revealed to induce morphological transformation, E-cadherin down-regulation, and protection against anoikis by mechanisms dependent on Grb2, while Shc was shown to be partly required for enhanced cell growth. The coupling of activated Met to the Ras/MEK/Erk and PI3K/Akt pathways, and the sustained engagement of Grb2 or Shc in IECs, was shown to trigger negative feedback, limiting the extent of activation of these pathways. Nonetheless, morphological alterations and E-cadherin down-regulation induced by the oncogenic Tpr-Met, and by Grb2 or Shc signals, were blocked by MEK, but not PI3K, inhibitors while the enhanced growth and resistance to anoikis induced by Tpr-Met were nearly abolished by co-treatment with both inhibitors.

Conclusion

Overall, these results identify Grb2 and Shc as central signaling effectors of Met-driven progression of intestinal epithelial-derived cancers. Notably, they suggest that Grb2 may represent a promising target for the design of novel CRC therapies.

【 授权许可】

   
2014 Pomerleau et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140724054900556.pdf 2920KB PDF download
41KB Image download
107KB Image download
83KB Image download
103KB Image download
105KB Image download
87KB Image download
【 图 表 】

【 参考文献 】
  • [1]Lemmon MA, Schlessinger J: Cell signaling by receptor tyrosine kinases. Cell 2010, 141(7):1117-1134.
  • [2]Saucier C, Rivard N: Epithelial cell signalling in metastatic colorectal cancer. In Metastasis of Colon Cancer, Volume 14. Edited by Huot J, Beauchemin N. Dordrecht, Heidelberg, London, New York: Springer Netherlands; 2010:205-241.
  • [3]Efferth T: Signal transduction pathways of the epidermal growth factor receptor in colorectal cancer and their inhibition by small molecules. Curr Med Chem 2012, 19(33):5735-5744.
  • [4]Samame Perez-Vargas JC, Biondani P, Maggi C, Gariboldi M, Gloghini A, Inno A, Volpi CC, Gualeni AV, di Bartolomeo M, de Braud F, Castano A, Bossi I, Pietrantonio F: Role of cMET in the development and progression of colorectal cancer. Int J Mol Sci 2013, 14(9):18056-18077.
  • [5]Bernier J, Chababi W, Pomerleau V, Saucier C: Oncogenic engagement of the Met receptor is sufficient to evoke angiogenic, tumorigenic, and metastatic activities in rat intestinal epithelial cells. Am J Physiol Gastrointest Liver Physiol 2010, 299(3):G677-G686.
  • [6]Boon EM, Kovarikova M, Derksen PW, van der Neut R: MET signalling in primary colon epithelial cells leads to increased transformation irrespective of aberrant Wnt signalling. Br J Cancer 2005, 92(6):1078-1083.
  • [7]Dankort DL, Wang Z, Blackmore V, Moran MF, Muller WJ: Distinct tyrosine autophosphorylation sites negatively and positively modulate neu-mediated transformation. Mol Cell Biol 1997, 17(9):5410-5425.
  • [8]Saucier C, Papavasiliou V, Palazzo A, Naujokas MA, Kremer R, Park M: Use of signal specific receptor tyrosine kinase oncoproteins reveals that pathways downstream from Grb2 or Shc are sufficient for cell transformation and metastasis. Oncogene 2002, 21(12):1800-1811.
  • [9]Saucier C, Khoury H, Lai KM, Peschard P, Dankort D, Naujokas MA, Holash J, Yancopoulos GD, Muller WJ, Pawson T, Park M: The Shc adaptor protein is critical for VEGF induction by Met/HGF and ErbB2 receptors and for early onset of tumor angiogenesis. Proc Natl Acad Sci U S A 2004, 101(8):2345-2350.
  • [10]Oku S, van der Meulen T, Copp J, Glenn G, van der Geer P: Engineering NGF receptors to bind Grb2 directly uncovers differences in signaling ability between Grb2- and ShcA-binding sites. FEBS Lett 2012, 586(20):3658-3664.
  • [11]Lucs AV, Muller WJ, Muthuswamy SK: Shc is required for ErbB2-induced inhibition of apoptosis but is dispensable for cell proliferation and disruption of cell polarity. Oncogene 2010, 29(2):174-187.
  • [12]Dankort D, Maslikowski B, Warner N, Kanno N, Kim H, Wang Z, Moran MF, Oshima RG, Cardiff RD, Muller WJ: Grb2 and Shc adapter proteins play distinct roles in Neu (ErbB-2)-induced mammary tumorigenesis: implications for human breast cancer. Mol Cell Biol 2001, 21(5):1540-1551.
  • [13]Wills MK, Jones N: Teaching an old dogma new tricks: twenty years of Shc adaptor signalling. Biochem J 2012, 447(1):1-16.
  • [14]Gu H, Neel BG: The “Gab” in signal transduction. Trends Cell Biol 2003, 13(3):122-130.
  • [15]Mood K, Saucier C, Ishimura A, Bong YS, Lee HS, Park M, Daar IO: Oncogenic Met receptor induces cell-cycle progression in Xenopus oocytes independent of direct Grb2 and Shc binding or Mos synthesis, but requires phosphatidylinositol 3-kinase and Raf signaling. J Cell Physiol 2006, 207(1):271-285.
  • [16]Ishimura A, Lee HS, Bong YS, Saucier C, Mood K, Park EK, Daar IO: Oncogenic Met receptor induces ectopic structures in Xenopus embryos. Oncogene 2006, 25(31):4286-4299.
  • [17]Hardy WR, Li L, Wang Z, Sedy J, Fawcett J, Frank E, Kucera J, Pawson T: Combinatorial ShcA docking interactions support diversity in tissue morphogenesis. Science 2007, 317(5835):251-256.
  • [18]Zheng Y, Zhang C, Croucher DR, Soliman MA, St-Denis N, Pasculescu A, Taylor L, Tate SA, Hardy WR, Colwill K, Dai AY, Bagshaw R, Dennis JW, Gingras AC, Daly RJ, Pawson T: Temporal regulation of EGF signalling networks by the scaffold protein Shc1. Nature 2013, 499(7457):166-171.
  • [19]Northey JJ, Dong Z, Ngan E, Kaplan A, Hardy WR, Pawson T, Siegel PM: Distinct phosphotyrosine-dependent functions of the ShcA adaptor protein Are required for transforming growth factor beta (TGFbeta)-induced breast cancer cell migration, invasion, and metastasis. J Biol Chem 2013, 288(7):5210-5222.
  • [20]Mood K, Saucier C, Bong YS, Lee HS, Park M, Daar IO: Gab1 is required for cell cycle transition, cell proliferation, and transformation induced by an oncogenic met receptor. Mol Biol Cell 2006, 17(9):3717-3728.
  • [21]Rodrigues GA, Naujokas MA, Park M: Alternative splicing generates isoforms of the met receptor tyrosine kinase which undergo differential processing. Mol Cell Biol 1991, 11(6):2962-2970.
  • [22]Lemieux E, Bergeron S, Durand V, Asselin C, Saucier C, Rivard N: Constitutively active MEK1 is sufficient to induce epithelial-to-mesenchymal transition in intestinal epithelial cells and to promote tumor invasion and metastasis. Int J Cancer 2009, 125(7):1575-1586.
  • [23]di Fulvio M, Henkels KM, Gomez-Cambronero J: Short-hairpin RNA-mediated stable silencing of Grb2 impairs cell growth and DNA synthesis. Biochem Biophys Res Commun 2007, 357(3):737-742.
  • [24]Kisielow M, Kleiner S, Nagasawa M, Faisal A, Nagamine Y: Isoform-specific knockdown and expression of adaptor protein ShcA using small interfering RNA. Biochem J 2002, 363(Pt 1):1-5.
  • [25]Quaroni A, Wands J, Trelstad RL, Isselbacher KJ: Epithelioid cell cultures from rat small intestine. Characterization by morphologic and immunologic criteria. J Cell Biol 1979, 80(2):248-265.
  • [26]Seiden-Long I, Navab R, Shih W, Li M, Chow J, Zhu CQ, Radulovich N, Saucier C, Tsao MS: Gab1 but not Grb2 mediates tumor progression in Met overexpressing colorectal cancer cells. Carcinogenesis 2008, 29(3):647-655.
  • [27]Scudiero DA, Shoemaker RH, Paull KD, Monks A, Tierney S, Nofziger TH, Currens MJ, Seniff D, Boyd MR: Evaluation of a soluble tetrazolium/formazan assay for cell growth and drug sensitivity in culture using human and other tumor cell lines. Cancer Res 1988, 48(17):4827-4833.
  • [28]Peschard P, Park M: From Tpr-Met to Met, tumorigenesis and tubes. Oncogene 2007, 26(9):1276-1285.
  • [29]Trusolino L, Bertotti A, Comoglio PM: MET signalling: principles and functions in development, organ regeneration and cancer. Nat Rev Mol Cell Biol 2010, 11(12):834-848.
  • [30]Gherardi E, Birchmeier W, Birchmeier C, Vande Woude G: Targeting MET in cancer: rationale and progress. Nat Rev Cancer 2012, 12(2):89-103.
  • [31]Thiery JP, Acloque H, Huang RY, Nieto MA: Epithelial-mesenchymal transitions in development and disease. Cell 2009, 139(5):871-890.
  • [32]Vachon PH: Integrin signaling, cell survival, and anoikis: distinctions, differences, and differentiation. J Signal Transduct 2011, 2011:738137.
  • [33]Demers MJ, Thibodeau S, Noel D, Fujita N, Tsuruo T, Gauthier R, Arguin M, Vachon PH: Intestinal epithelial cancer cell anoikis resistance: EGFR-mediated sustained activation of Src overrides Fak-dependent signaling to MEK/Erk and/or PI3-K/Akt-1. J Cell Biochem 2009, 107(4):639-654.
  • [34]Gauthier R, Harnois C, Drolet JF, Reed JC, Vezina A, Vachon PH: Human intestinal epithelial cell survival: differentiation state-specific control mechanisms. Am J Physiol Cell Physiol 2001, 280(6):C1540-C1554.
  • [35]Mendoza MC, Er EE, Blenis J: The Ras-ERK and PI3K-mTOR pathways: cross-talk and compensation. Trends Biochem Sci 2011, 36(6):320-328.
  • [36]Kamikura DM, Khoury H, Maroun C, Naujokas MA, Park M: Enhanced transformation by a plasma membrane-associated met oncoprotein: activation of a phosphoinositide 3′-kinase-dependent autocrine loop involving hyaluronic acid and CD44. Mol Cell Biol 2000, 20(10):3482-3496.
  • [37]Zhu H, Naujokas MA, Park M: Receptor chimeras indicate that the met tyrosine kinase mediates the motility and morphogenic responses of hepatocyte growth/scatter factor. Cell Growth Differ 1994, 5(4):359-366.
  • [38]Hanahan D, Weinberg RA: Hallmarks of cancer: the next generation. Cell 2011, 144(5):646-674.
  • [39]Tsanou E, Peschos D, Batistatou A, Charalabopoulos A, Charalabopoulos K: The E-cadherin adhesion molecule and colorectal cancer. A global literature approach. Anticancer Res 2008, 28(6A):3815-3826.
  • [40]Delva E, Kowalczyk AP: Regulation of cadherin trafficking. Traffic 2009, 10(3):259-267.
  • [41]Rosen K, Coll ML, Li A, Filmus J: Transforming growth factor-alpha prevents detachment-induced inhibition of c-Src kinase activity, Bcl-XL down-regulation, and apoptosis of intestinal epithelial cells. J Biol Chem 2001, 276(40):37273-37279.
  • [42]Fassetta M, D’Alessandro L, Coltella N, di Renzo MF, Rasola A: Hepatocyte growth factor installs a survival platform for colorectal cancer cell invasive growth and overcomes p38 MAPK-mediated apoptosis. Cell Signal 2006, 18(11):1967-1976.
  • [43]Zeng Q, Chen S, You Z, Yang F, Carey TE, Saims D, Wang CY: Hepatocyte growth factor inhibits anoikis in head and neck squamous cell carcinoma cells by activation of ERK and Akt signaling independent of NFkappa B. J Biol Chem 2002, 277(28):25203-25208.
  • [44]Tang MK, Zhou HY, Yam JW, Wong AS: c-Met overexpression contributes to the acquired apoptotic resistance of nonadherent ovarian cancer cells through a cross talk mediated by phosphatidylinositol 3-kinase and extracellular signal-regulated kinase 1/2. Neoplasia 2010, 12(2):128-138.
  • [45]Watanabe S, Kishimoto T, Yokosuka O: Hepatocyte growth factor inhibits anoikis of pancreatic carcinoma cells through phosphatidylinositol 3-kinase pathway. Pancreas 2011, 40(4):608-614.
  • [46]Eggstein S, Franke M, Kutschka I, Manthey G, von Specht BU, Ruf G, Farthmann EH: Expression and activity of mitogen activated protein kinases in human colorectal carcinoma. Gut 1999, 44(6):834-838.
  • [47]Wang Q, Ding Q, Dong Z, Ehlers RA, Evers BM: Downregulation of mitogen-activated protein kinases in human colon cancers. Anticancer Res 2000, 20(1A):75-83.
  • [48]Yeh JJ, Routh ED, Rubinas T, Peacock J, Martin TD, Shen XJ, Sandler RS, Kim HJ, Keku TO, Der CJ: KRAS/BRAF mutation status and ERK1/2 activation as biomarkers for MEK1/2 inhibitor therapy in colorectal cancer. Mol Cancer Ther 2009, 8(4):834-843.
  • [49]Sos ML, Fischer S, Ullrich R, Peifer M, Heuckmann JM, Koker M, Heynck S, Stuckrath I, Weiss J, Fischer F, Michel K, Goel A, Regales L, Politi KA, Perera S, Getlik M, Heukamp LC, Ansen S, Zander T, Beroukhim R, Kashkar H, Shokat KM, Sellers WR, Rauh D, Orr C, Hoeflich KP, Friedman L, Wong KK, Pao W, Thomas RK: Identifying genotype-dependent efficacy of single and combined PI3K- and MAPK-pathway inhibition in cancer. Proc Natl Acad Sci U S A 2009, 106(43):18351-18356.
  • [50]Sakakura C, Hagiwara A, Shirahama T, Nakanishi M, Yasuoka R, Fujita Y, Inazawa J, Abe T, Kohno M, Yamagishi H: Infrequent activation of mitogen-activated protein kinase in human colon cancers. Hepatogastroenterology 1999, 46(29):2831-2834.
  • [51]Lock LS, Frigault MM, Saucier C, Park M: Grb2-independent recruitment of Gab1 requires the C-terminal lobe and structural integrity of the Met receptor kinase domain. J Biol Chem 2003, 278(32):30083-30090.
  • [52]Chong CR, Janne PA: The quest to overcome resistance to EGFR-targeted therapies in cancer. Nat Med 2013, 19(11):1389-1400.
  • [53]Kuwai T, Nakamura T, Kim SJ, Sasaki T, Kitadai Y, Langley RR, Fan D, Hamilton SR, Fidler IJ: Intratumoral heterogeneity for expression of tyrosine kinase growth factor receptors in human colon cancer surgical specimens and orthotopic tumors. Am J Pathol 2008, 172(2):358-366.
  • [54]Liska D, Chen CT, Bachleitner-Hofmann T, Christensen JG, Weiser MR: HGF rescues colorectal cancer cells from EGFR inhibition via MET activation. Clin Cancer Res 2011, 17(3):472-482.
  • [55]Krumbach R, Schuler J, Hofmann M, Giesemann T, Fiebig HH, Beckers T: Primary resistance to cetuximab in a panel of patient-derived tumour xenograft models: activation of MET as one mechanism for drug resistance. Eur J Cancer 2011, 47(8):1231-1243.
  • [56]Straussman R, Morikawa T, Shee K, Barzily-Rokni M, Qian ZR, Du J, Davis A, Mongare MM, Gould J, Frederick DT, Cooper ZA, Chapman PB, Solit DB, Ribas A, Lo RS, Flaherty KT, Ogino S, Wargo JA, Golub TR: Tumour micro-environment elicits innate resistance to RAF inhibitors through HGF secretion. Nature 2012, 487(7408):500-504.
  • [57]Wilson TR, Fridlyand J, Yan Y, Penuel E, Burton L, Chan E, Peng J, Lin E, Wang Y, Sosman J, Ribas A, Li J, Moffat J, Sutherlin DP, Koeppen H, Merchant M, Neve R, Settleman J: Widespread potential for growth-factor-driven resistance to anticancer kinase inhibitors. Nature 2012, 487(7408):505-509.
  • [58]Corso S, Giordano S: Cell-autonomous and non-cell-autonomous mechanisms of HGF/MET-driven resistance to targeted therapies: from basic research to a clinical perspective. Cancer Discov 2013, 3(9):978-992.
  • [59]Bardelli A, Corso S, Bertotti A, Hobor S, Valtorta E, Siravegna G, Sartore-Bianchi A, Scala E, Cassingena A, Zecchin D, Apicella M, Migliardi G, Galimi F, Lauricella C, Zanon C, Perera T, Veronese S, Corti G, Amatu A, Gambacorta M, Diaz LA Jr, Sausen M, Velculescu VE, Comoglio P, Trusolino L, Di Nicolantonio F, Giordano S, Siena S: Amplification of the MET receptor drives resistance to anti-EGFR therapies in colorectal cancer. Cancer Discov 2013, 3(6):658-673.
  • [60]Cohen SJ, Cohen RB, Meropol NJ: Targeting signal transduction pathways in colorectal cancer–more than skin deep. J Clin Oncol 2005, 23(23):5374-5385.
  • [61]Atabey N, Gao Y, Yao ZJ, Breckenridge D, Soon L, Soriano JV, Burke TR Jr, Bottaro DP: Potent blockade of hepatocyte growth factor-stimulated cell motility, matrix invasion and branching morphogenesis by antagonists of Grb2 Src homology 2 domain interactions. J Biol Chem 2001, 276(17):14308-14314.
  • [62]Giubellino A, Gao Y, Lee S, Lee MJ, Vasselli JR, Medepalli S, Trepel JB, Burke TR Jr, Bottaro DP: Inhibition of tumor metastasis by a growth factor receptor bound protein 2 Src homology 2 domain-binding antagonist. Cancer Res 2007, 67(13):6012-6016.
  • [63]Yu GZ, Chen Y, Long YQ, Dong D, Mu XL, Wang JJ: New insight into the key proteins and pathways involved in the metastasis of colorectal carcinoma. Oncol Rep 2008, 19(5):1191-1204.
  文献评价指标  
  下载次数:106次 浏览次数:24次