期刊论文详细信息
BMC Developmental Biology
Electroablation: a method for neurectomy and localized tissue injury
Miguel L Allende1  Gonzalo Marín2  Consuelo Anguita-Salinas3  Nicole G Reynaert1  Daniela A Ureta1  Mario Sánchez1  Oscar A Peña1  José Moya-Díaz1 
[1] FONDAP Center for Genome Regulation, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile;Facultad de Medicina, Universidad Finis Terrae, Santiago, Chile;Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
关键词: Zebrafish;    Inflammation;    Regeneration;    Tissue ablation;    Neurectomy;    Axotomy;   
Others  :  1085209
DOI  :  10.1186/1471-213X-14-7
 received in 2013-08-12, accepted in 2014-01-21,  发布年份 2014
PDF
【 摘 要 】

Background

Tissue injury has been employed to study diverse biological processes such as regeneration and inflammation. In addition to physical or surgical based methods for tissue injury, current protocols for localized tissue damage include laser and two-photon wounding, which allow a high degree of accuracy, but are expensive and difficult to apply. In contrast, electrical injury is a simple and inexpensive technique, which allows reproducible and localized cell or tissue damage in a variety of contexts.

Results

We describe a novel technique that combines the advantages of zebrafish for in vivo visualization of cells with those of electrical injury methods in a simple and versatile protocol which allows the study of regeneration and inflammation. The source of the electrical pulse is a microelectrode that can be placed with precision adjacent to specific cells expressing fluorescent proteins. We demonstrate the use of this technique in zebrafish larvae by damaging different cell types and structures. Neurectomy can be carried out in peripheral nerves or in the spinal cord allowing the study of degeneration and regeneration of nerve fibers. We also apply this method for the ablation of single lateral line mechanosensory neuromasts, showing the utility of this approach as a tool for the study of organ regeneration. In addition, we show that electrical injury induces immune cell recruitment to damaged tissues, allowing in vivo studies of leukocyte dynamics during inflammation within a confined and localized injury. Finally, we show that it is possible to apply electroablation as a method of tissue injury and inflammation induction in adult fish.

Conclusions

Electrical injury using a fine microelectrode can be used for axotomy of neurons, as a general tissue ablation tool and as a method to induce a powerful inflammatory response. We demonstrate its utility to studies in both larvae and in adult zebrafish but we expect that this technique can be readily applied to other organisms as well. We have called this method of electrical based tissue ablation, electroablation.

【 授权许可】

   
2014 Moya-Díaz et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150113171515604.pdf 1955KB PDF download
Figure 7. 137KB Image download
Figure 6. 120KB Image download
Figure 5. 70KB Image download
Figure 4. 208KB Image download
Figure 3. 44KB Image download
Figure 2. 119KB Image download
Figure 1. 112KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

【 参考文献 】
  • [1]Rosenzweig ES, McDonald JW: Rodent models for treatment of spinal cord injury: research trends and progress toward useful repair. Curr Opin Neurol 2004, 17(2):121-131.
  • [2]Jones JE, Corwin JT: Regeneration of sensory cells after laser ablation in the lateral line system: hair cell lineage and macrophage behavior revealed by time-lapse video microscopy. J Neurosci 1996, 16(2):649-662.
  • [3]Yanik MF, Cinar H, Cinar HN, Chisholm AD, Jin Y, Ben-Yakar A: Neurosurgery: functional regeneration after laser axotomy. Nature 2004, 432(7019):822.
  • [4]Stramer B, Wood W, Galko MJ, Redd MJ, Jacinto A, Parkhurst SM, Martin P: Live imaging of wound inflammation in Drosophila embryos reveals key roles for small GTPases during in vivo cell migration. J Cell Biol 2005, 168(4):567-573.
  • [5]Redd MJ, Kelly G, Dunn G, Way M, Martin P: Imaging macrophage chemotaxis in vivo: studies of microtubule function in zebrafish wound inflammation. Cell Motil Cytoskel 2006, 63(7):415-422.
  • [6]O’Brien GS, Rieger S, Martin SM, Cavanaugh AM, Sagasti A: Two-photon axotomy and time-lapse confocal imaging in live zebrafish embryos. J Vis Exp 2009, 16(24):1129. doi:10.3791/1129
  • [7]Chang WC, Hawkes E, Keller CG, Sretavan D: Axon repair: surgical application at a subcellular scale. WIREs Nanomed Nanobiotechnol 2010, 2(2):151-161.
  • [8]Wiley RG, KlineIV RH: Neuronal lesioning with axonally transported toxins. J Neurosci Meth 2000, 103:73-82.
  • [9]Li Z, Korzh V, Gong Z: DTA-mediated targeted ablation revealed differential interdependence of endocrine cell lineages in early development of zebrafish pancreas. Differentiation 2009, 78(4):241-252.
  • [10]Curado S, Anderson RM, Junqblut B, Mumm J, Schroeter E, Stainier DY: Conditional targeted cell ablation in zebrafish: a new tool for regeneration studies. Dev Dyn 2007, 236(4):1025-1035.
  • [11]Pisharath H, Rhee JM, Swanson MA, Leach SD, Parsons MJ: Targeted ablation of beta cells in the embryonic zebrafish pancreas using E. coli nitroreductase. Mech Dev 2007, 124(3):218-229.
  • [12]Rieger S, Sagasti A: Hydrogen peroxide promotes injury-induced peripheral sensory axon regeneration in the zebrafish skin. PLoS Biol 2011, 9(5):e1000621.
  • [13]Lee RC, Zhang D, Hanning J: Biophysical injury mechanisms in electrical shock trauma. Annu Rev Biomed Eng 2000, 02:477-509.
  • [14]Lee RC, Canaday DJ, Hammer SM: Transient and stable ionic permeabilization of isolated skeletal muscle cells after electrical shock. J Burn Care Rehabil 1993, 14(5):528-540.
  • [15]Lee RC, Dougherty W: Electrical injury: mechanisms, manifestations, and therapy. IEEE T Dielect El In 2003, 10(5):810-818.
  • [16]Gershfeld NL, Murayama M: Thermal instability of red blood cell membrane bilayers: temperature dependence of hemolysis. J Memb Biol 1988, 101(1):62-72.
  • [17]Chen W, Lee RC: Altered ion channel conductance and ionic selectivity induced by large imposed membrane potential pulse. Biophys J 1994, 67(2):603-612.
  • [18]Hussmann J, Zamboni WA, Russell RC, Roth AC, Kucan JO, Suchy H, Bush K, Bradley T, Brown RE: A model for recording the microcirculatory changes associated with standardized electrical injury of skeletal muscle. J Surg Res 1995, 59(6):725-732.
  • [19]Carmeliet P, Moons L, Stassen JM, De Mol M, Bouché A, van der Oord JJ, Kockx M, Collen D: Vascular wound healing and neointima formation induced by perivascular electric injury in mice. Am J Pathol 1997, 150(2):761-776.
  • [20]Fan KW, Zhu ZX, Den ZY: An experimental model of an electrical injury to the peripheral nerve. Burns 2005, 31(6):731-736.
  • [21]Kusada A, Isogai N, Cooley BC: Electric injury model of murine arterial thrombosis. Thromb Res 2007, 121(1):103-106.
  • [22]Chen XY, Wolpaw JR: Ablation of cerebellar nuclei prevents H-reflex down-conditioning in rats. Learn Mem 2005, 12:248-254.
  • [23]Gao L, Fei S, Qiao W, Zhang J, Xing H, Du D: Protective effect of chemical stimulation of cerebellar fastigial nucleus on stress gastric mucosal injury in rats. Life Sci 2011, 88:871-878.
  • [24]Niethammer P, Grabher C, Look AT, Mitchison TJ: A tissue-scale gradient of hydrogen peroxide mediates rapid wound detection in zebrafish. Nature 2009, 459(18):996-999.
  • [25]Ghysen A, Dambly-Chaudière C: Development of the zebrafish lateral line. Curr Opin Neurobiol 2004, 14(1):67-73.
  • [26]Hernández PP, Moreno V, Olivari FA, Allende ML: Sub-lethal concentrations of waterborne copper are toxic to lateral line neuromasts in zebrafish (Danio rerio). Hearing Res 2006, 213(1–2):1-10.
  • [27]Froehlicher M, Liedtke A, Groh KJ, Neuhauss SC, Segner H, Eggen RI: Zebrafish (Danio rerio) neuromast: promising biological endpoint linking developmental and toxicological studies. Aquat Toxicol 2009, 95(4):307-319.
  • [28]Alheid GF, Carlsen J: Small injections of fluorescent tracers by iontophoresis or chronic implantation of micropipettes. Brain Res 1982, 235(1):174-178.
  • [29]Obholzer N, Wolfson S, Trapani JG, Mo W, Nechiporuk A, Busch-Nentwich E, Seiler C, Sidi S, Söllner C, Duncan RN, Boehland A, Nicolon T: Vesicular glutamate transporter 3 is required for synaptic transmission in zebrafish hair cells. J Neurosci 2008, 28(9):2110-2118.
  • [30]Villegas R, Martin SM, O’Donnell K, Carrillo SA, Sagasti A, Allende ML: Dynamics of degeneration and regeneration in developing zebrafish peripheral axons reveals a requirement for extrinsic cell types. Neural Dev 2012, 7:19. BioMed Central Full Text
  • [31]Hernández PP, Olivari FA, Sarrazin AF, Sandoval PC, Allende ML: Regeneration in zebrafish lateral line neuromasts: expression of the neural progenitor cell marker Sox2 and proliferation-dependent and -independent mechanisms of hair cell renewal. Dev Neurobiol 2007, 67:637-654.
  • [32]Gamba L, Cubedo N, Lutfalla G, Ghysen A, Dambly-Chaudière C: Lef1 controls patterning and proliferation in the posterior lateral line system of zebrafish. Dev Dyn 2010, 239(12):3163-3171.
  • [33]Haas P, Gilmour D: Chemokine signaling mediates self-organizing tissue migration in the zebrafish lateral line. Dev Cell 2006, 10:673-680.
  • [34]White ES, Mantovani AR: Inflammation, wound repair, and fibrosis: Reassessing the spectrum of tissue injury and resolution. J Pathol 2013, 229(2):141-144.
  • [35]Pearse D, Jarnagin K: Abating progressive tissue injury and preserving function after CNS trauma: The role of inflammation modulatory therapies. Curr Opin Investig Drugs 2010, 11(11):1207-1210.
  • [36]Hall C, Flores MV, Storm T, Crosier K, Crosier P: The zebrafish lysozyme C promoter drives myeloid-specific expression in transgenic fish. BMC Dev Biol 2007, 7:42. BioMed Central Full Text
  • [37]Ellett F, Pase L, Hayman JW, Andrianopoulos A, Lieschke GJ: mpeg1 promoter transgenes direct macrophage-lineage expression in zebrafish. Blood 2011, 117(4):e49-e56.
  • [38]Renshaw SA, Loynes CA, Trushell DM, Elworthy S, Ingham PW, Whyte MK: A transgenic zebrafish model of neutrophilic inflammation. Blood 2006, 108(13):3976-3978.
  • [39]Lawson ND, Weinstein BM: In vivo imaging of embryonic vascular development using transgenic zebrafish. Dev Biol 2002, 248(2):307-318.
  • [40]Parinov S, Kondrichin I, Korzh V, Emelyanov A: Tol2 transposon-mediated enhancer trap to identify developmentally regulated zebrafish genes in vivo. Dev Dyn 2004, 231(2):449-459.
  • [41]Yoo SK, Freisinger CM, LeBert DC, Huttenlocher A: Early redox, Src family kinase, and calcium signaling integrate wound responses and tissue regeneration in zebrafish. J Cell Biol 2012, 199(2):225-234.
  • [42]Lieschke GJ, Oates AC, Crowhurst MO, Ward AC, Layton JE: Morphologic and functional characterization of granulocytes and macrophages in embryonic and adult zebrafish. Blood 2001, 98(10):3087-3096.
  • [43]Mathias JR, Dodd ME, Walters KB, Rhodes J, Kanki JP, Look AT, Huttenlocher A: Live imaging of chronic inflammation caused by mutation of zebrafish Hai1. J Cell Sci 2007, 120(Pt 19):3372-3383.
  • [44]Westerfield M: The Zebrafish Book: A Guide for the Laboratory Use of Zebrafish (Danio rerio). Eugene, OR: University of Oregon Press; 2000.
  • [45]Mcgraw HF, Snelson CD, Prendergast A, Suli A, Raible DW: Postembryonic neuronal addition in Zebrafish dorsal root ganglia is regulated by Notch signaling. Neural Dev 2012, 7:23. BioMed Central Full Text
  • [46]Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF: Stages of embryonic development of the zebrafish. Dev Dyn 1995, 203(3):253-310.
  • [47]Schneider CA, Rasband WS, Eliceiri KW: NIH Image to ImageJ: 25 years of image analysis. Nat Methods 2012, 9:671-675.
  文献评价指标  
  下载次数:101次 浏览次数:51次