期刊论文详细信息
BMC Cancer
Human breast cancer and lymph node metastases express Gb3 and can be targeted by STxB-vectorized chemotherapeutic compounds
Ludger Johannes4  Jerzy Klijanienko3  Didier Decaudin1  Sophie Richon2  Gerald Massonnet3  Fariba Nemati1  Sabrina Dehay4  Lev Stimmer4 
[1]Laboratory of Preclinical Investigation, Translational Research Department, Institut Curie, Paris, France
[2]CNRS - IMTCE - IFR71, Faculté des Sciences Pharmaceutiques et Biologiques, 4, Avenue de l’Observatoire, 75006 Paris, France
[3]Department of Tumor Biology, Institut Curie, Paris, France
[4]U1143 INSERM, 75005 Paris, France
关键词: STxB;    Shiga toxin;    Gb3;    ESL;    Breast cancer;   
Others  :  1117947
DOI  :  10.1186/1471-2407-14-916
 received in 2014-08-26, accepted in 2014-11-27,  发布年份 2014
PDF
【 摘 要 】

Background

The B-subunit of Shiga toxin (STxB) specifically binds to the glycosphingolipid Gb3 that is highly expressed on a number of human tumors and has been shown to target tumor cells in mouse models and ex vivo on primary colon carcinoma specimen.

Methods

Using a novel ex vivo STxB labeling (ESL) method we studied Gb3 expression in cytological specimens of primary human breast tumors from 107 patients, and in synchronous lymph node metastases from 20 patients. Fluorescent STxB was incubated with fine-needle aspiration (FNA) specimens, and Gb3 expression was evaluated by fluorescence microscopy. Furthermore, 11 patient-derived human breast cancer xenografts (HBCx) were evaluated for expression of Gb3 by ESL and FACS. In addition, the biodistribution of fluorescent STxB conjugate was studied after intravenous injection in a Gb3 positive HBCx model.

Results

Gb3 expression was detected in 62 of 107 patients (57.9%), mainly in epithelial tumor cells. Gb3 positivity correlated with estrogen receptor expression (p ≤ 0.01), whereas absence of Gb3 expression in primary tumors was correlated with the presence of lymph node metastases (p ≤ 0.03). 65% of lymph node metastases were Gb3 positive and in 40% of tested patients, we observed a statistically significant increase of metastatic Gb3 expression (p ≤ 0.04). Using concordant ESL and flow cytometry analysis, 6 out of 11 HBCx samples were scored positive. Intravenous injections of fluorescent STxB into HBC xenografted mice showed preferential STxB accumulation in epithelial cells and cells with endothelial morphology of the tumor.

Conclusion

The enhanced expression of Gb3 in primary breast carcinomas and its lymph node metastases indicate that the development of STxB-based therapeutic strategies is of interest in this pathology. Gb3 expressing HBCx can be used as a model for preclinical studies with STxB conjugates. Finally, the ESL technique on FNA represents a rapid and cost effective method for the stratification of patients in future clinical trials.

【 授权许可】

   
2014 Stimmer et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150206013602639.pdf 1242KB PDF download
Figure 4. 153KB Image download
Figure 3. 134KB Image download
Figure 2. 79KB Image download
Figure 1. 62KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Johnston SR: The role of chemotherapy and targeted agents in patients with metastatic breast cancer. Eur J Cancer 2011, 47(Suppl 3):S38-S47.
  • [2]Shamseddine AI, Farhat FS: Platinum-based compounds for the treatment of metastatic breast cancer. Chemotherapy 2011, 57(6):468-487.
  • [3]Ivarsson ME, Leroux JC, Castagner B: Targeting bacterial toxins. Angew Chem Int Ed Engl 2012, 51(17):4024-4045. doi:10.1002/anie.201104384. Epub 2012 Mar 22
  • [4]Engedal N, Skotland T, Torgersen ML, Sandvig K: Shiga toxin and its use in targeted cancer therapy and imaging. Microb Biotechnol 2011, 4(1):32-46.
  • [5]Johannes L, Romer W: Shiga toxins–from cell biology to biomedical applications. Nat Rev Microbiol 2010, 8(2):105-116.
  • [6]Bekri S, Lidove O, Jaussaud R, Knebelmann B, Barbey F: The role of ceramide trihexoside (globotriaosylceramide) in the diagnosis and follow-up of the efficacy of treatment of Fabry disease: a review of the literature. Cardiovasc Hematol Agents Med Chem 2006, 4(4):289-297.
  • [7]Römer W, Berland L, Chambon V, Gaus K, Windschiegl B, Tenza D, Aly MR, Fraisier V, Florent JC, Perrais D, Lamaze C, Raposo G, Steinem C, Sens P, Bassereau P, Johannes L: Shiga toxin induces tubular membrane invaginations for its uptake into cells. Nature 2007, 450(7170):670-675.
  • [8]Johannes L, Popoff V: Tracing the retrograde route in protein trafficking. Cell 2008, 135(7):1175-1187.
  • [9]Hakomori S: Tumor malignancy defined by aberrant glycosylation and sphingo(glyco)lipid metabolism. Cancer Res 1996, 56(23):5309-5318.
  • [10]Johansson D, Kosovac E, Moharer J, Ljuslinder I, Brannstrom T, Johansson A, Behnam-Motlagh P: Expression of verotoxin-1 receptor Gb3 in breast cancer tissue and verotoxin-1 signal transduction to apoptosis. BMC Cancer 2009, 9:67. BioMed Central Full Text
  • [11]Wei F, Cao S, Ren X, Liu H, Yu J, Li H, Hao X: Efficient antiproliferative and antiangiogenic effects on human ovarian cancer growth by gene transfer of attenuated mutants of Shiga-like toxin I. Int J Gynecol Cancer 2008, 18(4):677-691.
  • [12]Maak M, Nitsche U, Keller L, Wolf P, Sarr M, Thiebaud M, Rosenberg R, Langer R, Kleeff J, Friess H, Johannes L, Janssen KP: Tumor-specific targeting of pancreatic cancer with Shiga toxin B-subunit. Mol Cancer Ther 2011, 10(10):1918-1928.
  • [13]Distler U, Souady J, Hulsewig M, Drmic-Hofman I, Haier J, Friedrich AW, Karch H, Senninger N, Dreisewerd K, Berkenkamp S, Schmidt MA, Peter-Katalinić J, Müthing J: Shiga toxin receptor Gb3Cer/CD77: tumor-association and promising therapeutic target in pancreas and colon cancer. PLoS One 2009, 4(8):e6813.
  • [14]Falguieres T, Maak M, von Weyhern C, Sarr M, Sastre X, Poupon MF, Robine S, Johannes L, Janssen KP: Human colorectal tumors and metastases express Gb3 and can be targeted by an intestinal pathogen-based delivery tool. Mol Cancer Ther 2008, 7(8):2498-2508.
  • [15]Salhia B, Rutka JT, Lingwood C, Nutikka A, Van Furth WR: The treatment of malignant meningioma with verotoxin. Neoplasia 2002, 4(4):304-311.
  • [16]Arab S, Rutka J, Lingwood C: Verotoxin induces apoptosis and the complete, rapid, long-term elimination of human astrocytoma xenografts in nude mice. Oncol Res 1999, 11(1):33-39.
  • [17]Heath-Engel HM, Lingwood CA: Verotoxin sensitivity of ECV304 cells in vitro and in vivo in a xenograft tumour model: VT1 as a tumour neovascular marker. Angiogenesis 2003, 6(2):129-141.
  • [18]Ishitoya S, Kurazono H, Nishiyama H, Nakamura E, Kamoto T, Habuchi T, Terai A, Ogawa O, Yamamoto S: Verotoxin induces rapid elimination of human renal tumor xenografts in SCID mice. J Urol 2004, 171(3):1309-1313.
  • [19]Goldhirsch A, Wood WC, Coates AS, Gelber RD, Thurlimann B, Senn HJ, Panel M: Strategies for subtypes--dealing with the diversity of breast cancer: highlights of the St. Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2011. Ann Oncol 2011, 22(8):1736-1747.
  • [20]Reyal F, Guyader C, Decraene C, Lucchesi C, Auger N, Assayag F, De Plater L, Gentien D, Poupon MF, Cottu P, De Cremoux P, Gestraud P, Vincent-Salomon A, Fontaine JJ, Roman-Roman S, Delattre O, Decaudin D, Marangoni E: Molecular profiling of patient-derived breast cancer xenografts. Breast Cancer Res 2012, 14(1):R11. BioMed Central Full Text
  • [21]Mallard F, Johannes L: Shiga toxin B-subunit as a tool to study retrograde transport. Methods Mol Med 2003, 73:209-220.
  • [22]Falguieres T, Mallard F, Baron C, Hanau D, Lingwood C, Goud B, Salamero J, Johannes L: Targeting of Shiga toxin B-subunit to retrograde transport route in association with detergent-resistant membranes. Mol Biol Cell 2001, 12(8):2453-2468.
  • [23]Petit V, Massonnet G, Maciorowski Z, Touhami J, Thuleau A, Nemati F, Laval J, Chateau-Joubert S, Servely JL, Vallerand D, Fontaine JJ, Taylor N, Battini JL, Sitbon M, Decaudin D: Optimization of tumor xenograft dissociation for the profiling of cell surface markers and nutrient transporters. Lab Invest 2013, 93(5):611-621. doi:10.1038/labinvest.2013.44. Epub 2013 Mar 4
  • [24]Wilkinson AR, Mahore SD, Maimoon SA: FNAC in the diagnosis of lymph node malignancies: a simple and sensitive tool. Indian J Med Paediatr Oncol 2012, 33(1):21-24.
  • [25]Broom RJ, Tang PA, Simmons C, Bordeleau L, Mulligan AM, O'Malley FP, Miller N, Andrulis IL, Brenner DM, Clemons MJ: Changes in estrogen receptor, progesterone receptor and Her-2/neu status with time: discordance rates between primary and metastatic breast cancer. Anticancer Res 2009, 29(5):1557-1562.
  • [26]de Plater L, Lauge A, Guyader C, Poupon MF, Assayag F, de Cremoux P, Vincent-Salomon A, Stoppa-Lyonnet D, Sigal-Zafrani B, Fontaine JJ, Brough R, Lord CJ, Ashworth A, Cottu P, Decaudin D, Marangoni E: Establishment and characterisation of a new breast cancer xenograft obtained from a woman carrying a germline BRCA2 mutation. Br J Cancer 2012, 103(8):1192-1200.
  • [27]Marangoni E, Vincent-Salomon A, Auger N, Degeorges A, Assayag F, de Cremoux P, de Plater L, Guyader C, De Pinieux G, Judde JG, Rebucci M, Tran-Perennou C, Sastre-Garau X, Sigal-Zafrani B, Delattre O, Diéras V, Poupon MF: A new model of patient tumor-derived breast cancer xenografts for preclinical assays. Clin Cancer Res 2007, 13(13):3989-3998.
  • [28]Devenica D, Cikes Culic V, Vuica A, Markotic A: Biochemical, pathological and oncological relevance of Gb3Cer receptor. Med Oncol 2011, 28(Suppl 1):S675-S684.
  • [29]Arab S, Russel E, Chapman WB, Rosen B, Lingwood CA: Expression of the verotoxin receptor glycolipid, globotriaosylceramide, in ovarian hyperplasias. Oncol Res 1997, 9(10):553-563.
  • [30]Pervez S, Shaikh H, Aijaz F, Aziz SA, Naqvi M, Hasan SH: Immunohistochemical estrogen receptor determination in human breast carcinoma: correlation with histologic differentiation and age of the patients. J Pak Med Assoc 1994, 44(6):133-136.
  • [31]Potapenko IO, Haakensen VD, Luders T, Helland A, Bukholm I, Sorlie T, Kristensen VN, Lingjaerde OC, Borresen-Dale AL: Glycan gene expression signatures in normal and malignant breast tissue; possible role in diagnosis and progression. Mol Oncol 2010, 4(2):98-118.
  • [32]Liang YJ, Ding Y, Levery SB, Lobaton M, Handa K, Hakomori SI: Differential expression profiles of glycosphingolipids in human breast cancer stem cells vs. cancer non-stem cells. Proc Natl Acad Sci U S A 2013, 110(13):4968-4973.
  • [33]Vignot S, Besse B, Andre F, Spano JP, Soria JC: Discrepancies between primary tumor and metastasis: a literature review on clinically established biomarkers. Crit Rev Oncol Hematol 2012, 84(3):301-313. doi:10.1016/j.critrevonc.2012.05.002. Epub 2012 Jun 17
  • [34]Niikura N, Liu J, Hayashi N, Mittendorf EA, Gong Y, Palla SL, Tokuda Y, Gonzalez-Angulo AM, Hortobagyi GN, Ueno NT: Loss of human epidermal growth factor receptor 2 (HER2) expression in metastatic sites of HER2-overexpressing primary breast tumors. J Clin Oncol 2012, 30(6):593-599.
  • [35]Muthing J, Distler U: Advances on the compositional analysis of glycosphingolipids combining thin-layer chromatography with mass spectrometry. Mass Spectrom Rev 2010, 29(3):425-479.
  • [36]Johansson D, Andersson C, Moharer J, Johansson A, Behnam-Motlagh P: Cisplatin-induced expression of Gb3 enables verotoxin-1 treatment of cisplatin resistance in malignant pleural mesothelioma cells. Br J Cancer 2010, 102(2):383-391.
  • [37]Lin C, Chen DR, Chang KJ, Chang TW, Wang HC: A phase II study of neoadjuvant chemotherapy with docetaxel, cisplatin and trastuzumab for T2 breast cancers. Cancer Chemother Pharmacol 2012, 69(5):1363-1368. doi:10.1007/s00280-012-1841-y. Epub 2012 Feb 19
  • [38]Kasibhatla S, Tseng B: Why target apoptosis in cancer treatment? Mol Cancer Ther 2003, 2(6):573-580.
  文献评价指标  
  下载次数:194次 浏览次数:77次