期刊论文详细信息
BMC Musculoskeletal Disorders
Biomechanical evaluation of a new pedicle screw-based posterior dynamic stabilization device (Awesome Rod System) - a finite element analysis
Shih-Liang Shih3  Chang-Hung Huang1  Chen-Sheng Chen2 
[1] Biomedical Research, Mackay Memorial Hospital, Tamshui District, New Taipei City, Taiwan;Department of Physical Therapy and Assistive Technology, National Yang-Ming University, Taipei, Taiwan;Institute of Neuroscience, National Chengchi University, Taipei, Taiwan
关键词: Lumbar spine;    Finite element model;    Adjunct to fusion;    Posterior dynamic stabilization;   
Others  :  1173912
DOI  :  10.1186/s12891-015-0538-x
 received in 2014-08-30, accepted in 2015-03-23,  发布年份 2015
PDF
【 摘 要 】

Background

Pedicle-screw-based posterior dynamic stabilization devices are designed to alleviate the rate of accelerated degeneration of the vertebral level adjacent to the level of spinal fusion. A new pedicle- screw-based posterior dynamic stabilization device- the Awesome Dynamic Rod System was designed with curve cuts on the rods to provide flexibility. The current study was conducted to evaluate the biomechanical properties of this new device.

Methods

Finite element models were developed for the intact spine (INT), the Awesome Dynamic Rod Implanted at L4-L5 (AWE), a traditional rigid rod system implanted at L4-L5 along with an interbody cage (FUS), and the Awesome Dynamic Rod System implanted at L4-L5 along with an interbody cage as an adjunct to fusion procedures and extension of dynamic fixation to L3-L4 (AWEFUS). The models were subjected to axial loads and pure moments and evaluated by a hybrid method on range of motion (ROM)s, disc stresses, pedicle screws stresses, and facet joint contact forces.

Results

FUS sustained the lowest L4-L5 ROM decrement in flexion and torsion. AWE demonstrated the lowest adjacent level ROM increment in all moments except for extension at L3-L4, and AWEFUS showed the greatest ROM increment at L2-L3. AWE demonstrated lowest adjacent segment disc stress in flexion, lateral bending and torsion at L3-L4. AWEFUS showed the highest disc stress increment in flexion, extension, and lateral bending, and the lowest disc stress decrement in torsion at L2-L3. AWE sustained greater adjacent facet joint contact forces than did FUS in extension and lateral bending at L3-L4, and AWEFUS demonstrated the greatest contact forces concentrating at L2-L3.

Conclusion

The results demonstrate that the Awesome Dynamic Rod System preserved more bridged segment motion than did the traditional rigid rod fixation system except in extension. However, the Awesome Dynamic Rod System bore a greater facet joint contact force in extension. The Awesome Dynamic Rod System did protect the adjacent level of fusion segments, but led to much greater ROM, disc stresses, and facet joint contact forces increasing at the adjacent level of instrumented segments.

【 授权许可】

   
2015 Chen et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150423021535463.pdf 881KB PDF download
Figure 2. 54KB Image download
Figure 1. 117KB Image download
【 图 表 】

Figure 1.

Figure 2.

【 参考文献 】
  • [1]Lehmann TR, Spratt KF, Tozzi JE, Weinstein JN, Reinarz SJ, El-Khoury GY, et al.: Long-term follow-up of lower lumbar fusion patients. Spine 1987, 12(2):97-104.
  • [2]Lee K: Accelerated degeneration of the segment adjacent to a lumbar fusion. Spine 1988, 13(3):375-7.
  • [3]Cunningham BW, Kotani Y, McNulty PS, Cappuccino A, McAfee PC: The effect of spinal destabilization and instrumentation on lumbar intradiscal pressure: an in vitro biomechanical analysis. Spine 1997, 22(22):2655-63.
  • [4]Ghiselli G, Wang JC, Bhatia N, Wellington KH, Dawson EG: Adjacent segment degeneration in the lumbar spine. J Bone Joint Surg Am 2004, 86:1497-503.
  • [5]Chamoli U, Diwan AD, Tsafnat N: Pedicle screw‐based posterior dynamic stabilizers for degenerative spine: In vitro biomechanical testing and clinical outcomes. J Biomed Mater Res Part A 2014, 102(9):3324-40.
  • [6]Erbulut DU, Kiapour A, Oktenoglu T, Ozer AF, Goel VK: A computational biomechanical investigation of posterior dynamic instrumentation: combination of dynamic rod and hinged (dynamic) screw. J Biomech Eng 2014, 136(5):051007.
  • [7]Bono CM, Kadaba M, Vaccaro AR: Posterior pedicle fixation-based dynamic stabilization devices for the treatment of degenerative diseases of the lumbar spine. J Spinal Disord Tech 2009, 22(5):376-83.
  • [8]Ozer AF: Dynamic stabilization of the spine: a new classification system. Turk Neurosurg 2010, 20(2):205-15.
  • [9]De Iure F, Bosco G, Cappuccio M, Paderni S, Amendola L: Posterior lumbar fusion by peek rods in degenerative spine: preliminary report on 30 cases. Eur Spine J 2012, 21(Suppl 1):50-4.
  • [10]Reyes-Sánchez A, Zárate-Kalfópulos B, Ramírez-Mora I, Rosales-Olivarez LM, Alpizar-Aguirre A, Sánchez-Bringas G: Posterior dynamic stabilization of the lumbar spine with the Accuflex rod system as a stand-alone device: experience in 20 patients with 2-year follow-up. Eur Spine J 2010, 19(12):2164-70.
  • [11]Kaner T, Dalbayrak S, Oktenoglu T, Sasani M, Levent AA, Ozer AF: Comparison of posterior dynamic and posterior rigid transpedicular stabilization with fusion to treat degenerative spondylolisthesis. Orthopedics 2010, 33(5):309.
  • [12]Stoffel M, Behr M, Reinke A, Stüer C, Ringel F, Meyer B: Pedicle-screw-based dynamic stabilization of the thoracolumbar spine with the Cosmic®-system: a prospective observation. Acta Neurochir 2010, 152(5):835-43.
  • [13]Li Z, Li F, Yu S, Ma H, Chen Z, Zhang H, et al.: Two-year followup results of the Isobar TTL Semi-Rigid Rod System for the treatment of lumbar degenerative disease. J Clin Neurosci 2013, 20:394-9.
  • [14]Gillet P: The fate of the adjacent motion segments after lumbar fusion. J Spinal Disord Tech 2003, 16(4):338-45.
  • [15]Cheng BC, Gordon J, Cheng J, Welch WC: Immediate biomechanical effects of lumbar posterior dynamic stabilization above a circumferential fusion. Spine 2007, 32(23):2551-7.
  • [16]Awasthi D, Tender G, Thomas N: Juxtafusional outcomes with the dynamic posterior lumbar instrumentation. World Spine III, Rio de Janeiro, Brazil; 2005.
  • [17]Shih SL, Chen CS, Lin HM, Huang LY, Liu CL, Huang CH, et al.: Effect of spacer diameter of the Dynesys dynamic stabilization system on the biomechanics of the lumbar spine: a finite element analysis. J Spinal Disord Tech 2012, 25(5):E140-9.
  • [18]Shih SL, Liu CL, Huang LY, Huang CH, Chen CS: Effects of cord pretension and stiffness of the Dynesys system spacer on the biomechanics of spinal decompression-a finite element study. BMC Musculoskelet Disord 2013, 14(1):191. BioMed Central Full Text
  • [19]Patel A, Welch WC: Posterior lumbar interbody fusion with metal cages: current techniques. Oper Tech Orthop 2000, 10(4):311-9.
  • [20]Panjabi MM: Hybrid multidirectional test method to evaluate spinal adjacent-level effects. Clin Biomech 2007, 22(3):257-65.
  • [21]Mandigo CE, Sampath P, Kaiser MG: Posterior dynamic stabilization of the lumbar spine: pedicle-based stabilization with the AccuFlex rod system. Neurosurg Focus 2007, 22(1):1-4.
  • [22]Yu AK, Siegfried CM, Chew B, Hobbs J, Sabersky A, Jho DJ, et al.: Biomechanics of posterior dynamic fusion systems in the lumbar spine: implications for stabilization with improved arthrodesis. J Spinal Disord Tech 2012, 10:1097.
  • [23]Wolff J, Maquet P, Furlong R: The law of bone remodeling. Springer, Berlin; 1986:126.
  • [24]Frost HM: A 2003 update of bone physiology and Wolff’s law for clinicians. Angle Orthod 2004, 74:3-15.
  • [25]Scifert JL, Sairyo K, Goel VK, Grobler LJ, Grosland NM, Spratt KF, et al.: Stability analysis of an enhanced load sharing posterior fixation device and its equivalent conventional device in a calf spine model. Spine 1999, 24(21):2206.
  • [26]Hudson WRS, Gee JE, Billys JB, Castellvi AE: Hybrid dynamic stabilization with posterior spinal fusion in the lumbar spine. SAS J 2011, 5:36-43.
  • [27]Ormond DR, Albert L Jr, Das K. Polyetheretherketone (PEEK) rods in lumbar spine degenerative disease: A case series. J Spinal Disord Tech. 2012. [Epub ahead of print].
  • [28]Jin YJ, Kim YE, Seo JH, Choi HW, Jahng TA: Effects of rod stiffness and fusion mass on the adjacent segments after floating mono-segmental fusion: a study using finite element analysis. Eur Spine J 2013, 22(5):1066-77.
  • [29]Niosi CA, Zhu QA, Wilson DC, Keynan O, Wilson DR, Oxland TR: Biomechanical characterization of the three-dimensional kinematic behaviour of the Dynesys dynamic stabilization system: an in vitro study. Eur Spine J 2006, 15(6):913-22.
  • [30]Wilke HJ, Heuer F, Schmidt H: Prospective design delineation and subsequent in vitro evaluation of a new posterior dynamic stabilization system. Spine 2009, 34(3):255-61.
  文献评价指标  
  下载次数:19次 浏览次数:27次