BMC Medical Imaging | |
Osteoporosis imaging: effects of bone preservation on MDCT-based trabecular bone microstructure parameters and finite element models | |
Jan S. Bauer3  Simone Waldt1  Ernst J. Rummeny1  Tina Zahel1  Michael Gruber2  Pia M. Jungmann1  Hans Liebl1  Olga Gordijenko1  Rainer Burgkart4  Eduardo Grande Garcia4  Thomas Baum1  | |
[1] Institut für Radiologie, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, München, 81675, Germany;Universitätsklinik für Radiologie und Nuklearmedizin, Abteilung für Neuroradiologie und Muskuloskeletale Radiologie, Medizinischen Universität Wien, Währinger Gürtel 18-20, Wien, 1090, Austria;Abteilung für Neuroradiologie, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, München, 81675, Germany;Klinik für Orthopädie, Abteilung für Biomechanik, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, München, 81675, Germany | |
关键词: Finite element model; Trabecular bone microstructure; Bone preservation; Osteoporosis; | |
Others : 1219061 DOI : 10.1186/s12880-015-0066-z |
|
received in 2014-10-07, accepted in 2015-06-19, 发布年份 2015 | |
【 摘 要 】
Background
Osteoporosis is defined as a skeletal disorder characterized by compromised bone strength due to a reduction of bone mass and deterioration of bone microstructure predisposing an individual to an increased risk of fracture. Trabecular bone microstructure analysis and finite element models (FEM) have shown to improve the prediction of bone strength beyond bone mineral density (BMD) measurements. These computational methods have been developed and validated in specimens preserved in formalin solution or by freezing. However, little is known about the effects of preservation on trabecular bone microstructure and FEM. The purpose of this observational study was to investigate the effects of preservation on trabecular bone microstructure and FEM in human vertebrae.
Methods
Four thoracic vertebrae were harvested from each of three fresh human cadavers (n = 12). Multi-detector computed tomography (MDCT) images were obtained at baseline, 3 and 6 month follow-up. In the intervals between MDCT imaging, two vertebrae from each donor were formalin-fixed and frozen, respectively. BMD, trabecular bone microstructure parameters (histomorphometry and fractal dimension), and FEM-based apparent compressive modulus (ACM) were determined in the MDCT images and validated by mechanical testing to failure of the vertebrae after 6 months.
Results
Changes of BMD, trabecular bone microstructure parameters, and FEM-based ACM in formalin-fixed and frozen vertebrae over 6 months ranged between 1.0–5.6 % and 1.3–6.1 %, respectively, and were not statistically significant (p > 0.05). BMD, trabecular bone microstructure parameters, and FEM-based ACM as assessed at baseline, 3 and 6 month follow-up correlated significantly with mechanically determined failure load (r = 0.89–0.99; p < 0.05). The correlation coefficients r were not significantly different for the two preservation methods (p > 0.05).
Conclusions
Formalin fixation and freezing up to six months showed no significant effects on trabecular bone microstructure and FEM-based ACM in human vertebrae and may both be used in corresponding in-vitro experiments in the context of osteoporosis.
【 授权许可】
2015 Baum et al.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150715020042903.pdf | 1160KB | download | |
Fig. 2. | 155KB | Image | download |
Fig. 1. | 71KB | Image | download |
【 图 表 】
Fig. 1.
Fig. 2.
【 参考文献 】
- [1]NIH Consensus Development Panel on Osteoporosis Prevention, Diagnosis, and Therapy, March 7–29, 2000: highlights of the conference. South Med J. 2001; 94:569-73.
- [2]Ioannidis G, Papaioannou A, Hopman WM, Akhtar-Danesh N, Anastassiades T, Pickard L et al.. Relation between fractures and mortality: results from the Canadian Multicentre Osteoporosis Study. CMAJ. 2009; 181:265-71.
- [3]Burge R, Dawson-Hughes B, Solomon DH, Wong JB, King A, Tosteson A. Incidence and economic burden of osteoporosis-related fractures in the United States, 2005–2025. J Bone Miner Res. 2007; 22:465-75.
- [4]Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. Report of a WHO Study Group. World Health Organ Tech Rep Ser. 1994; 843:1-129.
- [5]Adams JE. Quantitative computed tomography. Eur J Radiol. 2009; 71:415-24.
- [6]Schuit SC, van der Klift M, Weel AE, de Laet CE, Burger H, Seeman E et al.. Fracture incidence and association with bone mineral density in elderly men and women: the Rotterdam Study. Bone. 2004; 34:195-202.
- [7]Siris ES, Chen YT, Abbott TA, Barrett-Connor E, Miller PD, Wehren LE et al.. Bone mineral density thresholds for pharmacological intervention to prevent fractures. Arch Intern Med. 2004; 164:1108-12.
- [8]Link TM. Osteoporosis imaging: state of the art and advanced imaging. Radiology. 2012; 263:3-17.
- [9]Baum T, Karampinos DC, Liebl H, Rummeny EJ, Waldt S, Bauer JS. High-resolution bone imaging for osteoporosis diagnostics and therapy monitoring using clinical MDCT and MRI. Curr Med Chem. 2013; 20:4844-52.
- [10]Boskey AL, Cohen ML, Bullough PG. Hard tissue biochemistry: a comparison of fresh-frozen and formalin-fixed tissue samples. Calcif Tissue Int. 1982; 34:328-31.
- [11]Ohman C, Dall’Ara E, Baleani M, Van Sint JS, Viceconti M. The effects of embalming using a 4 % formalin solution on the compressive mechanical properties of human cortical bone. Clin Biomech (Bristol, Avon). 2008; 23:1294-8.
- [12]Unger S, Blauth M, Schmoelz W. Effects of three different preservation methods on the mechanical properties of human and bovine cortical bone. Bone. 2010; 47:1048-53.
- [13]Nazarian A, Hermannsson BJ, Muller J, Zurakowski D, Snyder BD. Effects of tissue preservation on murine bone mechanical properties. J Biomech. 2009; 42:82-6.
- [14]Linde F, Sorensen HC. The effect of different storage methods on the mechanical properties of trabecular bone. J Biomech. 1993; 26:1249-52.
- [15]Lochmuller EM, Krefting N, Burklein D, Eckstein F. Effect of fixation, soft-tissues, and scan projection on bone mineral measurements with dual energy X-ray absorptiometry (DXA). Calcif Tissue Int. 2001; 68:140-5.
- [16]Baum T, Grabeldinger M, Rath C, Grande GE, Burgkart R, Patsch JM et al.. Trabecular bone structure analysis of the spine using clinical MDCT: can it predict vertebral bone strength? J Bone Miner Metab. 2014; 32:56-64.
- [17]Baum T, Carballido-Gamio J, Huber MB, Muller D, Monetti R, Rath C et al.. Automated 3D trabecular bone structure analysis of the proximal femur--prediction of biomechanical strength by CT and DXA. Osteoporos Int. 2010; 21:1553-64.
- [18]Parfitt AM, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ et al.. Bone histomorphometry: standardization of nomenclature, symbols, and units. Report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res. 1987; 2:595-610.
- [19]Keyak JH, Falkinstein Y. Comparison of in situ and in vitro CT scan-based finite element model predictions of proximal femoral fracture load. Med Eng Phys. 2003; 25:781-7.
- [20]Les CM, Keyak JH, Stover SM, Taylor KT, Kaneps AJ. Estimation of material properties in the equine metacarpus with use of quantitative computed tomography. J Orthop Res. 1994; 12:822-33.
- [21]Crawford RP, Cann CE, Keaveny TM. Finite element models predict in vitro vertebral body compressive strength better than quantitative computed tomography. Bone. 2003; 33:744-50.
- [22]Keller TS. Predicting the compressive mechanical behavior of bone. J Biomech. 1994; 27:1159-68.
- [23]Kopperdahl DL, Morgan EF, Keaveny TM. Quantitative computed tomography estimates of the mechanical properties of human vertebral trabecular bone. J Orthop Res. 2002; 20:801-5.
- [24]Chevalier Y, Charlebois M, Pahra D, Varga P, Heini P, Schneider E et al.. A patient-specific finite element methodology to predict damage accumulation in vertebral bodies under axial compression, sagittal flexion and combined loads. Comput Methods Biomech Biomed Engin. 2008; 11:477-87.
- [25]Dall’Ara E, Pahr D, Varga P, Kainberger F, Zysset P. QCT-based finite element models predict human vertebral strength in vitro significantly better than simulated DEXA. Osteoporos Int. 2012; 23:563-72.
- [26]Gluer CC, Blake G, Lu Y, Blunt BA, Jergas M, Genant HK. Accurate assessment of precision errors: how to measure the reproducibility of bone densitometry techniques. Osteoporos Int. 1995; 5:262-70.
- [27]Duma SM, Rudd RW, Crandall JR. A protocol system for testing biohazardous materials in an impact biomechanics research facility. Am Ind Hyg Assoc J. 1999; 60:629-34.
- [28]van Haaren EH, van der Zwaard BC, van der Veen AJ, Heyligers IC, Wuisman PI, Smit TH. Effect of long-term preservation on the mechanical properties of cortical bone in goats. Acta Orthop. 2008; 79:708-16.
- [29]Wilke HJ, Krischak S, Claes LE. Formalin fixation strongly influences biomechanical properties of the spine. J Biomech. 1996; 29:1629-31.
- [30]Edmondston SJ, Singer KP, Day RE, Breidahl PD, Price RI. Formalin fixation effects on vertebral bone density and failure mechanics: an in-vitro study of human and sheep vertebrae. Clin Biomech (Bristol, Avon). 1994; 9:175-9.