期刊论文详细信息
BMC Medical Genetics
Targeted 'Next-Generation' sequencing in anophthalmia and microphthalmia patients confirms SOX2, OTX2 and FOXE3 mutations
Anne M Slavotinek4  Elliott H Sherr3  Adele Schneider5  Leath Tonkin2  Tanya Bardakjian5  Jiang Li3  Mani Yahyavi4  Jason Flannick1  Nelson Lopez Jimenez4 
[1] Broad Institute of Harvard and MIT, Cambridge MA Massachusetts General Hospital, Boston, Massachusetts USA;Vincent J. Coates Genomics Sequencing Laboratory (GSL) QB3/University of California, Berkeley USA B206 Stanley Hall MC 3220 Berkeley, CA 94720-3220;Department of Neurology, University of California, San Francisco, San Francisco, California 94143-0114 USA;Department of Pediatrics, Division of Genetics, University of California, San Francisco, 533 Parnassus St, Room U585P, San Francisco CA 94143-0748 USA;Division of Genetics, Department of Pediatrics, Albert Einstein Medical Center, Philadelphia, Pennsylvania 19141 USA
关键词: FOXE3;    OTX2;    SOX2;    next-generation sequencing;    microphthalmia;    anophthalmia;   
Others  :  1177936
DOI  :  10.1186/1471-2350-12-172
 received in 2011-10-11, accepted in 2011-12-28,  发布年份 2011
PDF
【 摘 要 】

Background

Anophthalmia/microphthalmia (A/M) is caused by mutations in several different transcription factors, but mutations in each causative gene are relatively rare, emphasizing the need for a testing approach that screens multiple genes simultaneously. We used next-generation sequencing to screen 15 A/M patients for mutations in 9 pathogenic genes to evaluate this technology for screening in A/M.

Methods

We used a pooled sequencing design, together with custom single nucleotide polymorphism (SNP) calling software. We verified predicted sequence alterations using Sanger sequencing.

Results

We verified three mutations - c.542delC in SOX2, resulting in p.Pro181Argfs*22, p.Glu105X in OTX2 and p.Cys240X in FOXE3. We found several novel sequence alterations and SNPs that were likely to be non-pathogenic - p.Glu42Lys in CRYBA4, p.Val201Met in FOXE3 and p.Asp291Asn in VSX2. Our analysis methodology gave one false positive result comprising a mutation in PAX6 (c.1268A > T, predicting p.X423LeuextX*15) that was not verified by Sanger sequencing. We also failed to detect one 20 base pair (bp) deletion and one 3 bp duplication in SOX2.

Conclusions

Our results demonstrated the power of next-generation sequencing with pooled sample groups for the rapid screening of candidate genes for A/M as we were correctly able to identify disease-causing mutations. However, next-generation sequencing was less useful for small, intragenic deletions and duplications. We did not find mutations in 10/15 patients and conclude that there is a need for further gene discovery in A/M.

【 授权许可】

   
2011 LopezJimenez et al; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150504033242176.pdf 530KB PDF download
Figure 1. 98KB Image download
【 图 表 】

Figure 1.

【 参考文献 】
  • [1]Shah SP, Taylor A, Sowden JC, Ragge NK, Russell-Eggitt I, Rahi JS, Gilbert CE, Surveillance of Eye Anomalies (SEA-UK) Special Interest Group: Anophthalmos, microphthalmos and typical coloboma in the UK: a prospective study of incidence and risk. Invest Ophthalmol Vis Sci 2011, 52:558-564.
  • [2]Ragge NK, Lorenz B, Schneider A, Bushby K, de Sanctis L, de Sanctis U, Salt A, Collin JR, Vivian AJ, Free SL, Thompson P, Williamson KA, Sisodiya SM, van Heyningen V, Fitzpatrick DR: SOX2 anophthalmia syndrome. Am J Med Genet A 2005, 135:1-7.
  • [3]Reis LM, Tyler RC, Schneider A, Bardakjian T, Semina EV: Examination of SOX2 in variable ocular conditions identifies a recurrent deletion in microphthalmia and lack of mutations in other phenotypes. Mol Vis 2010, 16:768-773.
  • [4]Verma AS, Fitzpatrick DR: Anophthalmia and microphthalmia. Orphanet J Rare Dis 2007, 2:47. BioMed Central Full Text
  • [5]Gonzalez-Rodriguez J, Pelcastre EL, Garcia-Ortiz JE, Amato-Almanza M, Villanueva-Mendoza C, Espinosa-Mattar Z, Zenteno JC: Mutational screening of CHX10, GDF6, OTX2, RAX and SOX2 genes in 50 unrelated microphthalmia-anophthalmia-coloboma (MAC) spectrum cases. Br J Ophthalmol 2010, 94:1100-1104.
  • [6]Fantes J, Ragge NK, Lynch SA, McGill NI, Collin JR, Howard-Peebles PN, Hayward C, Vivian AJ, Williamson K, van Heyningen V, FitzPatrick DR: Mutations in SOX2 cause anophthalmia. Nat Genet 2003, 33:461-463.
  • [7]Schneider A, Bardakjian T, Reis LM, Tyler RC, Semina EV: Novel SOX2 mutations and genotype-phenotype correlation in anophthalmia and microphthalmia. Am J Med Genet A 2009, (149A):2706-2715.
  • [8]Schilter KF, Schneider A, Bardakjian T, Soucy JF, Tyler RC, Reis LM, Semina EV: OTX2 microphthalmia syndrome: four novel mutations and delineation of a phenotype. Clin Genet 2010, (79):158-168.
  • [9]Percin EF, Ploder LA, Yu JJ, Arici K, Horsford DJ, Rutherford A, Bapat B, Cox DW, Duncan AMV, Kalnins VI, Kocak-Altintas A, Sowden JC, Trabousli E, Sarfarazi M, McInnes RR: Human microphthalmia associated with mutations in the retinal homeobox gene CHX10. Nat Genet 2000, 25:397-401.
  • [10]Reis LM, Tyler RC, Schneider A, Bardakjian T, Stoler JM, Melancon SB, Semina EV: FOXE3 plays a significant role in autosomal recessive microphthalmia. Am J Med Genet A 2010, (152A):582-590.
  • [11]Billingsley G, Santhiya ST, Paterson AD, Ogata K, Wodak S, Hosseini SM, Manisastry SM, Vijayalakshmi P, Gopinath PM, Graw J, Héon E: CRYBA4, a novel human cataract gene, is also involved in microphthalmia. Am J Hum Genet 2006, 79:702-709.
  • [12]Amiel J, Audollent S, Joly D, Dureau P, Salomon R, Tellier AL, Augé J, Bouissou F, Antignac C, Gubler MC, Eccles MR, Munnich A, Vekemans M, Lyonnet S, Attié-Bitach T: PAX2 mutations in renal-coloboma syndrome: mutational hotspot and germline mosaicism. Eur J Hum Genet 2000, 8:820-826.
  • [13]Glaser T, Jepeal L, Edwards JG, Young SR, Favor J, Maas RL: PAX6 gene dosage effect in a family with congenital cataracts, aniridia, anophthalmia and central nervous system defects. Nat Genet 1994, 7:463-471.
  • [14]Bardakjian T, Weiss A, Schneider AS: Anophthalmia/Microphthalmia Overview. In GeneReviews [Internet], Seattle (WA). Edited by Pagon RA, Bird TC, Dolan CR, Stephens K. University of Washington, Seattle; 1993-2004; Jan 29 [updated 2007 Feb 15]
  • [15]Bakrania P, Efthymiou M, Klein JC, Salt A, Bunyan DJ, Wyatt A, Ponting CP, Martin A, Williams S, Lindley V, Gilmore J, Restori M, Robson AG, Neveu MM, Holder GE, Collin JR, Robinson DO, Farndon P, Johansen-Berg H, Gerrelli D, Ragge NK: Mutations in BMP4 cause eye, brain, and digit developmental anomalies: overlap between the BMP4 and hedgehog signaling pathways. Am J Hum Genet 2008, 82:304-319.
  • [16]ten Bosch JR, Grody WW: Keeping up with the next-generation: massively parallel sequencing in clinical diagnostics. J Mol Diagn 2008, 10:484-492.
  • [17]Ng SB, Buckingham KJ, Lee C, Bigham AW, Tabor HK, Dent KM, Huff CD, Shannon PT, Jabs EW, Nickerson DA, Shendure J, Bamshad MJ: Exome sequencing identifies the cause of a mendelian disorder. Nat Genet 2010, 42:30-35.
  • [18]Ng SB, Bigham AW, Buckingham KJ, Hannibal MC, McMillin MJ, Gildersleeve HI, Beck AE, Tabor HK, Cooper GM, Mefford HC, Lee C, Turner EH, Smith JD, Rieder MJ, Yoshiura K, Matsumoto N, Ohta T, Niikawa N, Nickerson DA, Bamshad MJ, Shendure J: Exome sequencing identifies MLL2 mutations as a cause of Kabuki syndrome. Nat Genet 2010, 42:790-793.
  • [19]Choi M, Scholl UI, Ji W, Liu T, Tikhonova IR, Zumbo P, Nayir A, Bakkaloğlu A, Ozen S, Sanjad S, Nelson-Williams C, Farhi A, Mane S, Lifton RP: Genetic diagnosis by whole exome capture and massively parallel DNA sequencing. Proc Natl Acad Sci USA 2009, 106:19096-190101.
  • [20]Lalonde E, Albrecht S, Ha KC, Jacob K, Bolduc N, Polychronakos C, Dechelotte P, Majewski J, Jabado N: Unexpected allelic heterogeneity and spectrum of mutations in Fowler syndrome revealed by next-generation exome sequencing. Hum Mutat 2010, 31:918-923.
  • [21]Li H, Ruan J, Durbin R: Mapping short DNA sequencing reads and calling variants using mapping quality scores. Genome Res 2008, 18:1851-1858.
  • [22]McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA: The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 2010, 20:1297-1303.
  • [23]Calvo SE, Tucker EJ, Compton AG, Kirby DM, Crawford G, Burtt NP, Rivas M, Guiducci C, Bruno DL, Goldberger OA, Redman MC, Wiltshire E, Wilson CJ, Altshuler D, Gabriel SB, Daly MJ, Thorburn DR, Mootha VK: High-throughput, pooled sequencing identifies mutations in NUBPL and FOXRED1 in human complex I deficiency. Nat Genet 2010, 42:851-858.
  • [24]Tzoulaki I, White IM, Hanson IM: PAX6 mutations: genotype-phenotype correlations. BMC Genet 2005, 6:27.
  • [25]Otto EA, Ramaswami G, Janssen S, Chaki M, Allen SJ, Zhou W, Airik R, Hurd TW, Ghosh AK, Wolf MT, Hoppe B, Neuhaus TJ, Bockenhauer D, Milford DV, Soliman NA, Antignac C, Saunier S, Johnson CA, Hildebrandt F, GPN Study Group: Mutation analysis of 18 nephronophthisis associated ciliopathy disease genes using a DNA pooling and next-generation sequencing strategy. J Med Genet 2010, 52:105-116.
  文献评价指标  
  下载次数:20次 浏览次数:34次