期刊论文详细信息
BMC Developmental Biology
Monitoring brain development of chick embryos in vivo using 3.0 T MRI: subdivision volume change and preliminary structural quantification using DTI
Jianrong Xu1  Jinyan Zu1  Lei Li1  Weiwei Ma1  Jiehui Shan2  Zengai Chen1  Zien Zhou1 
[1]Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
[2]Department of Geriatrics, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai, China
关键词: Diffusion tensor imaging;    Magnetic resonance imaging;    In vivo;    Brain development;    Chick embryo;   
Others  :  1221638
DOI  :  10.1186/s12861-015-0077-6
 received in 2014-12-09, accepted in 2015-06-29,  发布年份 2015
PDF
【 摘 要 】

Background

Magnetic resonance imaging (MRI) has many advantages in the research of in vivo embryonic brain development, specifically its noninvasive aspects and ability to avoid skeletal interference. However, few studies have focused on brain development in chick, which is a traditional animal model in developmental biology. We aimed to serially monitor chick embryo brain development in vivo using 3.0 T MRI.

Methods

Ten fertile Hy-line white eggs were incubated and seven chick embryo brains were monitored in vivo and analyzed serially from 5 to 20 days during incubation using 3.0 T MRI. A fast positioning sequence was pre-scanned to obtain sagittal and coronal brain planes corresponding to the established atlas. T2-weighted imaging (T2WI) was performed for volume estimation of the whole brain and subdivision (telencephalon, cerebellum, brainstem, and lateral ventricle [LV]); diffusion tensor imaging (DTI) was used to reflect the evolution of neural bundle structures.

Results

The chick embryos’ whole brain and subdivision grew non-linearly over time; the DTI fractional anisotropy (FA) value within the telencephalon increased non-linearly as well. All seven scanned eggs hatched successfully.

Conclusions

MRI avoids embryonic sacrifice in a way that allows serial monitoring of longitudinal developmental processes of a single embryo. Feasibility for analyzing subdivision of the brain during development, and adding structural information related to neural bundles, makes MRI a powerful tool for exploring brain development.

【 授权许可】

   
2015 Zhou et al.

【 预 览 】
附件列表
Files Size Format View
20150803014637569.pdf 2708KB PDF download
Fig. 5. 76KB Image download
Fig. 4. 76KB Image download
Fig. 3. 184KB Image download
Fig. 2. 109KB Image download
Fig. 1. 28KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

【 参考文献 】
  • [1]Kulesa PM. Developmental imaging: insights into the avian embryo. Birth Defects Res C Embryo Today. 2004; 72:260-6.
  • [2]Dickinson ME. Multimodal imaging of mouse development: tools for the postgenomic era. Dev Dyn. 2006; 235:2386-400.
  • [3]Winkelmann CT, Wise LD. High-throughput micro-computed tomography imaging as a method to evaluate rat and rabbit fetal skeletal abnormalities for developmental toxicity studies. J Pharmacol Toxicol Methods. 2009; 59:156-65.
  • [4]Gregg CL, Butcher JT. Quantitative in vivo imaging of embryonic development: opportunities and challenges. Differentiation. 2012; 84:149-62.
  • [5]Kulesa PM, McKinney MC, McLennan R. Developmental imaging: the avian embryo hatches to the challenge. Birth Defects Res C Embryo Today. 2013; 99:121-33.
  • [6]Le Bihan D, Mangin JF, Poupon C, Clark CA, Pappata S, Molko N et al.. Diffusion tensor imaging: concepts and applications. J Magn Reson Imaging. 2001; 13:534-46.
  • [7]Ruffins SW, Jacobs RE. MRI in developmental biology and the construction of developmental atlases. Cold Spring Harb Protoc. 2011;doi:-http://creativecommons.org/publicdomain/zero/1.0/10.1101/pdb.top100.
  • [8]Turnbull DH, Mori S. MRI in mouse developmental biology. NMR Biomed. 2007; 20:265-74.
  • [9]Zhang J, Richards LJ, Yarowsky P, Huang H, van Zijl PC, Mori S. Three-dimensional anatomical characterization of the developing mouse brain by diffusion tensor microimaging. NeuroImage. 2003; 20:1639-48.
  • [10]Parasoglou P, Berrios-Otero CA, Nieman BJ, Turnbull DH. High-resolution MRI of early-stage mouse embryos. NMR Biomed. 2013; 26:224-31.
  • [11]Liu F, Garland M, Duan Y, Stark RI, Xu D, Bansal R et al.. Techniques for in utero, longitudinal MRI of fetal brain development in baboons at 3 T. Methods. 2010; 50:147-56.
  • [12]Hikishima K, Sawada K, Murayama AY, Komaki Y, Kawai K, Sato N et al.. Atlas of the developing brain of the marmoset monkey constructed using magnetic resonance histology. Neuroscience. 2013; 230:102-13.
  • [13]Rashidi H, Sottile V. The chick embryo: hatching a model for contemporary biomedical research. Bioessays. 2009; 31:459-65.
  • [14]Deryugina EI, Quigley JP. Chick embryo chorioallantoic membrane model systems to study and visualize human tumor cell metastasis. Histochem. Cell Biol. 2008; 130:1119-30.
  • [15]Nishigori H, Kagami K, Takahashi A, Tezuka Y, Sanbe A, Nishigori H. Impaired social behavior in chicks exposed to sodium valproate during the last week of embryogenesis. Psychopharmacology. 2013; 227:393-402.
  • [16]Bain MM, Fagan AJ, Mullin JM, McNaught I, McLean J, Condon B. Noninvasive monitoring of chick development in ovo using a 7 T MRI system from day 12 of incubation through to hatching. J Magn Reson Imaging. 2007; 26:198-201.
  • [17]Boss A, Oppitz M, Wehrl HF, Rossi C, Feuerstein M, Claussen CD et al.. Measurement of T1, T2 and magnetization transfer properties during embryonic development at 7 Tesla using the chicken model. J Magn Reson Imaging. 2008; 28:1510-4.
  • [18]Duce S, Morrison F, Welten M, Baggott G, Tickle C. Micro-magnetic resonance imaging study of live quail embryos during embryonic development. Magn Reson Imaging. 2011; 29:132-9.
  • [19]Hogers B, van der Weerd L, Olofsen H, van der Graaf LM, DeRuiter MC, Gittenberger-de Groot AC et al.. Non-invasive tracking of avian development in vivo by MRI. NMR Biomed. 2009; 22:365-73.
  • [20]VAN TIENHOVEN A, JUHASZ LP. The chicken telencephalon, diencephalon and mesencephalon in sterotaxic coordinates. J Comp Neurol. 1962; 118:185-97.
  • [21]Goedbloed JF. Embryonic and postnatal growth of rat and mouse. IV. Prenatal growth of organs and tissues: age determination, and general growth pattern. Acta Anat (Basel). 1976; 95:8-33.
  • [22]Habas PA, Kim K, Corbett-Detig JM, Rousseau F, Glenn OA, Barkovich AJ et al.. A spatiotemporal atlas of MR intensity, tissue probability and shape of the fetal brain with application to segmentation. Neuroimage. 2010; 53:460-70.
  • [23]Cahill LS, Zhou YQ, Seed M, Macgowan CK, Sled JG. Brain sparing in fetal mice: BOLD MRI and Doppler ultrasound show blood redistribution during hypoxia. J Cereb Blood Flow Metab. 2014; 34:1082-8.
  • [24]Peebles DM, Dixon JC, Thornton JS, Cady EB, Priest A, Miller SL et al.. Magnetic resonance proton spectroscopy and diffusion weighted imaging of chick embryo brain in ovo. Brain Res Dev Brain Res. 2003; 141:101-7.
  • [25]Zhou Z, Delproposto Z, Wu L, Xu J, Hua J, Zhou Y et al.. In ovo serial skeletal muscle diffusion tractography of the developing chick embryo using DTI: feasibility and correlation with histology. BMC Dev Biol. 2012; 12:38. BioMed Central Full Text
  • [26]Xu J, Delproposto Z, Zhou Z, Shen H, Xuan SY, Li QH et al.. In ovo monitoring of smooth muscle fiber development in the chick embryo: diffusion tensor imaging with histologic correlation. PLoS One. 2012; 7: Article ID e34009
  • [27]Kilkenny C, Browne W, Cuthill IC, Emerson M, Altman DG. Animal research: reporting in vivo experiments: the ARRIVE guidelines. Br J Pharmacol. 2010;160:1577–9 .
  • [28]Zhou Z, Xu J, Delproposto ZS, Hua J, Fan Y, Zhang Z et al.. Feasibility of in ovo diffusion tractography in the chick embryo using a dual-cooling technique. J Magn Reson Imaging. 2012; 36:993-1001.
  文献评价指标  
  下载次数:262次 浏览次数:156次