期刊论文详细信息
BMC Genomics
An SNP-based saturated genetic map and QTL analysis of fruit-related traits in cucumber using specific-length amplified fragment (SLAF) sequencing
Jinfeng Chen1  Qunfeng Lou1  Ji Li1  Jing Wang1  Zhentao Zhang1  Yunxia Zhang1  Xiaodong Qin1  Yunzhu Wang1  Qingzhen Wei1 
[1] State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No.1, Nanjing 210095, China
关键词: QTL analysis;    Cucumis sativus L;    SNP;    Genetic map;    SLAF-seq;   
Others  :  1122573
DOI  :  10.1186/1471-2164-15-1158
 received in 2014-05-27, accepted in 2014-12-11,  发布年份 2014
【 摘 要 】

Background

Cucumber, Cucumis sativus L., is an economically important vegetable crop which is processed or consumed fresh worldwide. However, the narrow genetic base in cucumber makes it difficult for constructing high-density genetic maps. The development of massively parallel genotyping methods and next-generation sequencing (NGS) technologies provides an excellent opportunity for developing single nucleotide polymorphisms (SNPs) for linkage map construction and QTL analysis of horticultural traits. Specific-length amplified fragment sequencing (SLAF-seq) is a recent marker development technology that allows large-scale SNP discovery and genotyping at a reasonable cost. In this study, we constructed a high-density SNP map for cucumber using SLAF-seq and detected fruit-related QTLs.

Results

An F2 population of 148 individuals was developed from an intra-varietal cross between CC3 and NC76. Genomic DNAs extracted from two parents and 148 F2 individuals were subjected to high-throughput sequencing and SLAF library construction. A total of 10.76 Gb raw data and 75,024,043 pair-end reads were generated to develop 52,684 high-quality SLAFs, out of which 5,044 were polymorphic. 4,817 SLAFs were encoded and grouped into different segregation patterns. A high-resolution genetic map containing 1,800 SNPs was constructed for cucumber spanning 890.79 cM. The average distance between adjacent markers was 0.50 cM. 183 scaffolds were anchored to the SNP-based genetic map covering 46% (168.9 Mb) of the cucumber genome (367 Mb). Nine QTLs for fruit length and weight were detected, a QTL designated fl3.2 explained 44.60% of the phenotypic variance. Alignment of the SNP markers to draft genome scaffolds revealed two mis-assembled scaffolds that were validated by fluorescence in situ hybridization (FISH).

Conclusions

We report herein the development of evenly dispersed SNPs across cucumber genome, and for the first time an SNP-based saturated linkage map. This 1,800-locus map would likely facilitate genetic mapping of complex QTL loci controlling fruit yield, and the orientation of draft genome scaffolds.

【 授权许可】

   
2014 Wei et al.; licensee BioMed Central.

附件列表
Files Size Format View
Figure 3. 67KB Image download
Figure 3. 56KB Image download
Figure 2. 46KB Image download
Figure 1. 65KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 3.

【 参考文献 】
  • [1]Dijkhuizen A, Kennard WC, Havey MJ, Staub JE: RFLP variation and genetic relationships in cultivated cucumber. Euphytica 1996, 90(1):79-87.
  • [2]Horejsi T, Staub JE: Genetic variation in cucumber (Cucumis sativus L.) as assessed by random amplified polymorphic DNA1. Genet Resour Crop Evol 1999, 46(4):337-350.
  • [3]Knerr LD, Staub JE, Holder DJ, May BP: Genetic diversity in Cucumis sativus L. assessed by variation at 18 allozyme coding loci. Theor Appl Genet 1989, 78(1):119-128.
  • [4]Li YH, Wen CL, Weng YQ: Fine mapping of the pleiotropic locus B for black spine and orange mature fruit color in cucumber identifies a 50 kb region containing a R2R3-MYB transcription factor. Theor Appl Genet 2013, 126(8):2187-2196.
  • [5]Serquen FC, Bacher J, Staub JE: Mapping and QTL analysis of horticultural traits in a narrow cross in cucumber (Cucumis sativus L.) using random-amplified polymorphic DNA markers. Mol Breeding 1997, 3(4):257-268.
  • [6]Fazio G, Staub JE, Stevens MR: Genetic mapping and QTL analysis of horticultural traits in cucumber (Cucumis sativus L.) using recombinant inbred lines. Theor Appl Genet 2003, 107(5):864-874.
  • [7]Li XJ, Pan JS, Wang G, Tian LB, Si LT, Wu AZ, Cai R: Localization of genes for lateral branch and female sex expression and construction of a molecular linkage map in cucumber (Cucumis sativus L.) with RAPD markers. Prog Nat Sci 2005, 15(2):143-148.
  • [8]Yuan XJ, Li XZ, Pan JS, Wang G, Jiang S, Li XH, Deng SL, He HL, Si MX, Lai L, Wu AZ, Zhu LH, Cai R: Genetic linkage map construction and location of QTLs for fruit-related traits in cucumber. Plant Breeding 2008, 127(2):180-188.
  • [9]Fukino N, Yoshioka Y, Kubo N, Hirai M, Sugiyama M, Sakata Y, Matsumoto S: Development of 101 novel SSR markers and construction of an SSR-based genetic linkage map in cucumber (Cucumis sativus L.). Breeding sci 2008, 58(4):475-483.
  • [10]Huang SW, Li RQ, Zhang ZH, Li L, Gu XF, Fan W, Lucas WJ, Wang XW, Xie BY, Ni PX: The genome of the cucumber, Cucumis sativus L. Nat Genet 2009, 41(12):1275-1281.
  • [11]Yang L, Koo DH, Li Y, Zhang X, Luan F, Havey MJ, Jiang J, Weng Y: Chromosome rearrangements during domestication of cucumber as revealed by high-density genetic mapping and draft genome assembly. Plant J 2012, 71(6):895-906.
  • [12]Wóycicki R, Witkowicz J, Gawroński P, Dąbrowska J, Lomsadze A, Pawełkowicz M, Siedlecka E, Yagi K, Pląder W, Seroczyńska A, Śmiech M, Gutman W, Niemirowicz-Szczytt K, Bartoszewski G, Tagashira N, Hoshi Y, Borodovsky M, Karpiński S, Malepszy S, Przybecki Z: The Genome Sequence of the North-European Cucumber (Cucumis sativus L.) Unravels Evolutionary Adaptation Mechanisms in Plants. PLoS One 2011, 6(7):e22728.
  • [13]Cavagnaro PF, Senalik DA, Yang LM, Simon PW, Harkins TT, Kodira CD, Huang SW, Weng YQ: Genome-wide characterization of simple sequence repeats in cucumber (Cucumis sativus L.). BMC Genomics 2010, 11(1):569. BioMed Central Full Text
  • [14]Ren Y, Zhang ZH, Liu JH, Staub JE, Han YH, Cheng ZC, Li XF, Lu JY, Miao H, Kang HX, Xie BY, Gu XF, Wang XW, Du YC, Jin WW, Huang SW: An Integrated Genetic and Cytogenetic Map of the Cucumber Genome. PLoS One 2009, 4(6):e5795.
  • [15]Weng YQ, Johnson S, Staub JE, Huang SW: An Extended Intervarietal Microsatellite Linkage Map of Cucumber, Cucumis sativus L. HortSci 2010, 45(6):882-886.
  • [16]Miao H, Zhang SP, Wang XW, Zhang ZH, Li M, Mu SQ, Cheng ZC, Zhang RW, Huang SW, Xie BY, Fang ZY, Zhang ZX, Weng YQ, Gu XF: A linkage map of cultivated cucumber (Cucumis sativus L.) with 248 microsatellite marker loci and seven genes for horticulturally important traits. Euphytica 2011, 182(2):167-176.
  • [17]Wang S, Meyer E, McKay JK, Matz MV: 2b-RAD: a simple and flexible method for genome-wide genotyping. Nat Meth 2012, 9(8):808-810.
  • [18]Fukino N, Yoshioka Y, Sugiyama M, Sakata Y, Matsumoto S: Identification and validation of powdery mildew (Podosphaera xanthii)-resistant loci in recombinant inbred lines of cucumber (Cucumis sativus L.). Mol Breeding 2013, 32(2):267-277.
  • [19]He XM, Li YH, Pandey S, Yandell B, Pathak M, Weng Q: QTL mapping of powdery mildew resistance in WI 2757 cucumber (Cucumis sativus L.). Theor Appl Genet 2013, 126(8):2149-2161.
  • [20]Kang HC, Weng YQ, Yang YH, Zhang ZH, Zhang SP, Mao ZC, Cheng GH, Gu XF, Huang SW, Xie BY: Fine genetic mapping localizes cucumber scab resistance gene Ccu into an R gene cluster. Theor Appl Genet 2011, 122(4):795-803.
  • [21]Li DW, Cuevas H, Yang LM, Li YH, Garcia-Mas J, Zalapa J, Staub JE, Luan FS, Reddy U, He XM, Gong ZH, Weng YQ: Syntenic relationships between cucumber (Cucumis sativus L.) and melon (C. melo L.) chromosomes as revealed by comparative genetic mapping. BMC Genomics 2011, 12(1):1-14. BioMed Central Full Text
  • [22]Li Z, Zhang ZH, Yan PC, Huang SW, Fei ZJ, Lin K: RNA-Seq improves annotation of protein-coding genes in the cucumber genome. BMC Genomics 2011, 12(1):540. BioMed Central Full Text
  • [23]Zhang WW, He HL, Guan Y, Du H, Yuan LH, Li Z, Yao DQ, Pan JS, Cai R: Identification and mapping of molecular markers linked to the tuberculate fruit gene in the cucumber (Cucumis sativus L.). Theor Appl Genet 2010, 120(3):645-654.
  • [24]Lysak M, Mandáková T: Analysis of Plant Meiotic Chromosomes by Chromosome Painting. Plant Meiosis 2013, 990(2):13-24.
  • [25]Van Tassell CP, Smith TP, Matukumalli LK, Taylor JF, Schnabel RD, Lawley CT, Haudenschild CD, Moore SS, Warren WC, Sonstegard TS: SNP discovery and allele frequency estimation by deep sequencing of reduced representation libraries. Nat Meth 2008, 5(3):247-252.
  • [26]Yang LM, Li DW, Li YH, Gu XF, Huang SW, Garcia-Mas J, Weng YQ: A 1,681-locus consensus genetic map of cultivated cucumber including 67 NB-LRR resistance gene homolog and ten gene loci. BMC Plant Biol 2013, 13(1):53. BioMed Central Full Text
  • [27]Bourgeois YX, Lhuillier E, Cézard T, Bertrand JA, Delahaie B, Cornuault J, Duval T, Bouchez O, Milá B, Thébaud C: Mass production of SNP markers in a nonmodel passerine bird through RAD sequencing and contig mapping to the zebra finch genome. Mol Ecol Resour 2013, 13(5):899-907.
  • [28]Stölting KN, Nipper R, Lindtke D, Caseys C, Waeber S, Castiglione S, Lexer C: Genomic scan for single nucleotide polymorphisms reveals patterns of divergence and gene flow between ecologically divergent species. Mol Ecol 2013, 22(3):842-855.
  • [29]Wang J, Luo MC, Chen Z, You FM, Wei Y, Zheng Y, Dvorak J: Aegilops tauschii single nucleotide polymorphisms shed light on the origins of wheat D-genome genetic diversity and pinpoint the geographic origin of hexaploid wheat. New Phytol 2013, 198(3):925-937.
  • [30]Davey JW, Hohenlohe PA, Etter PD, Boone JQ, Catchen JM, Blaxter ML: Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat Rev Genet 2011, 12(7):499-510.
  • [31]Lucito R, Nakimura M, West JA, Han Y, Chin K, Jensen K, McCombie R, Gray JW, Wigler M: Genetic analysis using genomic representations. P Natl Acad Sci 1998, 95(8):4487-4492.
  • [32]Altshuler D, Pollara VJ, Cowles CR, Van Etten WJ, Baldwin J, Linton L, Lander ES: An SNP map of the human genome generated by reduced representation shotgun sequencing. Nature 2000, 407(6803):513-516.
  • [33]Miller MR, Dunham JP, Amores A, Cresko WA, Johnson EA: Rapid and cost-effective polymorphism identification and genotyping using restriction site associated DNA (RAD) markers. Genome Res 2007, 17(2):240-248.
  • [34]Baird NA, Etter PD, Atwood TS, Currey MC, Shiver AL, Lewis ZA, Selker EU, Cresko WA, Johnson EA: Rapid SNP discovery and genetic mapping using sequenced RAD markers. PloS One 2008, 3(10):e3376.
  • [35]Ogden R: Unlocking the potential of genomic technologies for wildlife forensics. Mol Ecol Resour 2011, 11(s1):109-116.
  • [36]Sun XW, Liu DY, Zhang XF, Li WB, Liu H, Hong WG, Jiang CB, Guan N, Ma CX, Zeng HP: SLAF-seq: an efficient method of large-scale de novo SNP discovery and genotyping using high-throughput sequencing. PloS One 2013, 8(3):e58700.
  • [37]Zhang YX, Wang LH, Xin HG, Li DH, Ma CX, Ding X, Hong WG, Zhang XR: Construction of a high-density genetic map for sesame based on large scale marker development by specific length amplified fragment (SLAF) sequencing. BMC Plant Biol 2013, 13:141. BioMed Central Full Text
  • [38]Qi ZM, Huang L, Zhu RS, Xin D, Liu CY, Han X, Jiang HW, Hong WG, Hu GH, Zheng HK, Chen QH: A high-density genetic map for soybean based on specific length amplified fragment sequencing. PLoS One 2014, 9(8):e104871.
  • [39]Dijkhuizen A, Staub JE: QTL Conditioning Yield and Fruit Quality Traits in Cucumber (Cucumis sativus L.) Effects of Environment and Genetic Background. Journal of New Seeds 2002, 4(4):1-30.
  • [40]Yuan XJ, Pan JS, Cai R, Guan Y, Liu LZ, Zhang WW, Li Z, He HL, Zhang C, Si LT, Zhu LH: Genetic mapping and QTL analysis of fruit and flower related traits in cucumber (Cucumis sativus L.) using recombinant inbred lines. Euphytica 2008, 164(2):473-491.
  • [41]Chen QJ, Zhang HY, Wang YJ, Li WY, Zhang F, Mao AJ, Cheng JH, Chen MY: Mapping and analyzing QTLs of yield-associated agronomic traits of greenhouse cucumbers. Scientia Agricultura Sinica 2010, 43(1):112-122.
  • [42]Cheng ZC, Gu XF, Zhang SP, Miao H, Zhang RW, Liu MM, Yang SJ: QTL analysis for fruit length of cucumber. China Vegetables 2010, 12:20-25.
  • [43]Miao H, Gu XF, Zhang SP, Zhang ZH, Huang SW, Wang Y, Cheng ZC, Zhang RW, Mu SQ, Li M: Mapping QTLs for fruit-associated traits in Cucumis sativus L. Scientia Agricultura Sinica 2011, 44(24):5031-5040.
  • [44]Qi JJ, Liu X, Shen D, Miao H, Xie BY, Li XX, Zeng P, Wang SH, Shang Y, Gu XF, et al.: A genomic variation map provides insights into the genetic basis of cucumber domestication and diversity. Nature Genet 2013, 45(12):1510-1515.
  • [45]Wenzel G, Kennard WC, Havey MJ: Quantitative trait analysis of fruit quality in cucumber: QTL detection, confirmation, and comparison with mating-design variation. Theor Appl Genet 1995, 91(1):53-61.
  • [46]Trick M, Long Y, Meng JL, Bancroft I: Single nucleotide polymorphism (SNP) discovery in the polyploid Brassica napus using Solexa transcriptome sequencing. Plant Biotechnol J 2009, 7(4):334-346.
  • [47]Ariyadasa R, Mascher M, Nussbaumer T, Schulte D, Frenkel Z, Poursarebani N, Zhou R, Steuernagel B, Gundlach H, Taudien S, Felder M, Platzer M, Himmelbach A, Schmutzer T, Hedley PE, Muehlbauer GJ, Scholz U, Korol A, Mayer KFX, Waugh R, Langridge P, Graner A, Stein N: A Sequence-Ready Physical Map of Barley Anchored Genetically by Two Million Single-Nucleotide Polymorphisms. Plant Physiol 2014, 164(1):412-423.
  • [48]Ganal MW, Altmann T, Röder MS: SNP identification in crop plants. Curr Opin Plant Biol 2009, 12(2):211-217.
  • [49]Hohenlohe PA, Amish SJ, Catchen JM, Allendorf FW, Luikart G: Next‒generation RAD sequencing identifies thousands of SNPs for assessing hybridization between rainbow and westslope cutthroat trout. Mol Ecol Resour 2011, 11(s1):117-122.
  • [50]Chutimanitsakun Y, Nipper RW, Cuesta-Marcos A, Cistué L, Corey A, Filichkina T, Johnson EA, Hayes PM: Construction and application for QTL analysis of a Restriction Site Associated DNA (RAD) linkage map in barley. BMC Genomics 2011, 12(1):4. BioMed Central Full Text
  • [51]Cogan NI, Ponting RC, Vecchies AC, Drayton MC, George J, Dracatos PM, Dobrowolski MP, Sawbridge TI, Smith KF, Spangenberg GC: Gene-associated single nucleotide polymorphism discovery in perennial ryegrass (Lolium perenne L.). Mol Genet Genomics 2006, 276(2):101-112.
  • [52]Chen SQ, Huang ZF, Dai Y, Qin SW, Gao YY, Zhang LL, Gao Y, Chen JM: The development of 7E chromosome-specific molecular markers for thinopyrum elongatum based on SLAF-seq technology. PLoS One 2013, 8(6):e65122.
  • [53]Zhang WW, Pan JS, He HL, Zhang C, Li Z, Zhao JL, Yuan XJ, Zhu LH, Huang SW, Cai R: Construction of a high density integrated genetic map for cucumber (Cucumis sativus L.). Theor Appl Genet 2012, 124(2):249-259.
  • [54]Lou QF, Zhang YX, He YH, Li J, Jia L, Cheng CY, Guan W, Yang SQ, Chen JF: Single-copy gene-based chromosome painting in cucumber and its application for chromosome rearrangement analysis in Cucumis. Plant J 2014, 78(1):169-179.
  • [55]Lou QF, He YH, Cheng CY, Zhang ZH, Li J, Huang SW, Chen JF: Integration of high-resolution physical and genetic map reveals differential recombination frequency between chromosomes and the genome assembling quality in cucumber. PLoS One 2013, 8(5):e62676.
  • [56]Zhuang JY, Lin HX, Lu J, Qian HR, Hittalmani S, Huang N, Zheng KL: Analysis of QTL × environment interaction for yield components and plant height in rice. Theor Appl Genet 1997, 95(5–6):799-808.
  • [57]Levine DM, Ramsey PP, Smidt RK: Applied Statistics for Engineers and Scientists: using Microsoft Excel and Minitable. Upper Saddle River, NJ: Prentice-Hall, Inc.; 2001.
  • [58]Murray M, Thompson WF: Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 1980, 8(19):4321-4326.
  • [59]Van Ooijen J, Voorrips R: Joinmap 4.0. Software for the Calculation of Genetic Linkage Maps in Experimental Populations. 2006.
  • [60]Van Ooijen J, Boer M, Jansen R, Maliepaard C: MapQTL 4.0. Software for the Calculation of Qtl Positions on Genetic Maps (User Manual). 2000.
  • [61]Peichel CL, Nereng KS, Ohgi KA, Cole BLE, Colosimo PF, Buerkle CA, Schluter D, Kingsley DM: The genetic architecture of divergence between threespine stickleback species. Nat MapQTL 2001, 414(6866):901-905.
  • [62]Courbot M, Willems G, Motte P, Arvidsson S, Roosens N, Saumitou-Laprade P, Verbruggen N: A major quantitative trait locus for cadmium tolerance in Arabidopsis halleri colocalizes with HMA4, a gene encoding a heavy metal ATPase. Plant Physiol 2007, 144(2):1052-1065.
  • [63]Wang WX, Huang SM, Liu YM, Fang ZY, Yang LM, Hua W, Yuan SX, Liu SY, Sun JF, Zhuang M: Construction and analysis of a high-density genetic linkage map in cabbage (Brassica oleracea L. var. capitata). BMC Genomics 2012, 13(1):523. BioMed Central Full Text
  • [64]Van Ooijen JW: Accuracy of mapping quantitative trait loci in autogamous species. Theor Appl Genet 1992, 84(7–8):803-811.
  文献评价指标  
  下载次数:13次 浏览次数:9次