期刊论文详细信息
BMC Genomics
Expression quantitative trait loci infer the regulation of isoflavone accumulation in soybean (Glycine max L. Merr.) seed
Wenbin Li1  Dongmei Li1  Lin Wu1  Yongguang Li1  Xue Zhao1  Weili Teng1  Yingpeng Han1  Yan Wang1 
[1] Key Laboratory of Soybean Biology in Chinese Ministry of Education (key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin 150030, China
关键词: Candidate genes;    pQTL;    Isoflavone;    eQTL;    Soybean;   
Others  :  1216269
DOI  :  10.1186/1471-2164-15-680
 received in 2014-04-29, accepted in 2014-07-30,  发布年份 2014
PDF
【 摘 要 】

Background

Mapping expression quantitative trait loci (eQTL) of targeted genes represents a powerful and widely adopted approach to identify putative regulatory variants. Linking regulation differences to specific genes might assist in the identification of networks and interactions. The objective of this study is to identify eQTL underlying expression of four gene families encoding isoflavone synthetic enzymes involved in the phenylpropanoid pathway, which are phenylalanine ammonia-lyase (PAL; EC 4.3.1.5), chalcone synthase (CHS; EC 2.3.1.74), 2-hydroxyisoflavanone synthase (IFS; EC1.14.13.136) and flavanone 3-hydroxylase (F3H; EC 1.14.11.9). A population of 130 recombinant inbred lines (F5:11), derived from a cross between soybean cultivar ‘Zhongdou 27’ (high isoflavone) and ‘Jiunong 20’ (low isoflavone), and a total of 194 simple sequence repeat (SSR) markers were used in this study. Overlapped loci of eQTLs and phenotypic QTLs (pQTLs) were analyzed to identify the potential candidate genes underlying the accumulation of isoflavone in soybean seed.

Results

Thirty three eQTLs (thirteen cis-eQTLs and twenty trans-eQTLs) underlying the transcript abundance of the four gene families were identified on fifteen chromosomes. The eQTLs between Satt278-Sat_134, Sat_134-Sct_010 and Satt149-Sat_234 underlie the expression of both IFS and CHS genes. Five eQTL intervals were overlapped with pQTLs. A total of eleven candidate genes within the overlapped eQTL and pQTL were identified.

Conclusions

These results will be useful for the development of marker-assisted selection to breed soybean cultivars with high or low isoflavone contents and for map-based cloning of new isoflavone related genes.

【 授权许可】

   
2014 Wang et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150629173810230.pdf 1223KB PDF download
Figure 1. 210KB Image download
【 图 表 】

Figure 1.

【 参考文献 】
  • [1]Tsukamoto C, Shimada S, Igita K, Kudou S, Kokubun M, Okubo K, Kitamura K: Factors affecting isoflavone content in soybean seeds: Changes in isoflavones, saponins, and composition of fatty acids at different temperatures during seed development. J Agric Food Chem 1995, 43:1184-1192.
  • [2]Munro IC, Harwood M, Hlywka JJ, Stephen AM, Doull J, Flamm WG, Adlercreutz H: Soy isoflavones: a safety review. Nutr Rev 2003, 61:1-33.
  • [3]Cederroth CR, Nef S: Soy, phytoestrogens and metabolism: a review. Mol Cell Endocrinol 2009, 304:30-42.
  • [4]Benhamou N, Nicole M: Cell biology of plant immunization against microbial infection: the potential of induced resistance in controlling plant diseases. Plant Physiol Biochem 1999, 37:703-719.
  • [5]Subramanian S, Graham MY, Yu O, Graham TL: RNA interference of soybean isoflavone synthase genes leads to silencing in tissues distal to the transformation site and to enhanced susceptibility to Phytophthora sojae. Plant Physiol 2005, 137:1345-1353.
  • [6]Subramanian S, Stacey G, Yu O: Distinct, crucial roles of flavonoids during legume nodulation. Trends Plant Sci 2007, 12:282-285.
  • [7]Lozovaya VV, Lygin AV, Zernova OVLISX, Hartman GL, Widholm M: Isoflavonoid accumulation in soybean hairy roots upon treatment with Fusarium solani. Plant Physiol Biochem 2004, 42:671-679.
  • [8]Meksem K, Njiti VN, Banz WJ, Iqbal MJ, Kassem MM, Hyten DL, Yuang J, Winters TA, Lightfoot DA: Genomic regions that underlie soybean seed isoflavone content. J Biomed Biotechnol 2001, 1(1):38-44.
  • [9]Kassem MA, Meksem K, Iqbal MJ, Njiti VN, Banz WJ, Winters TA, Wood A, Lightfoot DA: Definition of soybean genomic regions that control seed phytoestrogen amounts. J Biomed Biotechnol 2004, 1:52-60.
  • [10]Primomo VS, Poysa V, Ablett GR, Jackson CJ, Gijzen M, Rajcan I: Mapping QTL for individual and total isoflavone content in soybean seeds. Crop Sci 2005, 45:2454-2462.
  • [11]Gutierrez GJJ, Wu XL, Gillman JD, Lee JD, Zhong R, Yu O, Shannon G, Ellersieck M, Nguyen HT, Sleper DA: Intricate environment-modulated genetic networks control isoflavone accumulation in soybean seeds. BMC Plant Biol 2010, 10:105-120.
  • [12]Hoeck JA, Fehr WR, Murphy PA, Welke GA: Influence of genotype and environment on isoflavone contents of soybean. Crop Sci 2000, 40:48-51.
  • [13]Dhaubhadel S, McGarvey BD, Williams R, Gijzen M: Isoflavonoid biosynthesis and accumulation in developing soybean seeds. Plant Mol Biol 2003, 53:733-743.
  • [14]Murphy SE, Lee EA, Woodrow L, Seguin P, Kumar J, Rajcan I, Ablett GR: Genotype × Environment interaction and stability for isoflavone content in soybean. Crop Sci 2009, 49:1313-1321.
  • [15]Kassem MA, Shultz J, Meksem K, Cho Y, Wood AJ, Iqbal MJ, Lightfoot DA: An updated ‘Essex’ by ‘Forrest’ linkage map and first composite interval map of QTL underlying six soybean traits. Theor Appl Genet 2006, 113:1015-1026.
  • [16]Zeng G, Li D, Han Y, Teng W, Wang J, Qiu L, Li W: Identification of QTL underlying isoflavone contents in soybean seeds among multiple environments. Theor Appl Genet 2009, 118:1455-1463.
  • [17]Gutierrez GJJ, Vuong TD, Zhong R, Yu O, Lee JD, Shannon G, Ellersieck M, Nguyen HT, Sleper DA: Major locus and other novel additive and epistatic loci involved in modulation of isoflavone concentration in soybean seeds. Theor Appl Genet 2011, 123:1375-1385.
  • [18]Liang HZ, Yu YL, Wang SF, Lian Y, Wang TF, Wei YL, Gong PT, Liu XY, Fang XJ, Zhang MC: QTL mapping of isoflavone, oil and protein contents in soybean (Glycine max L. Merr.). Agric Sci China 2010, 9:1108-1116.
  • [19]Meng FL, Han YP, Teng WL, Li YG, Li WB: QTL underlying the resistance to soybean aphid (Aphis glycines Matsumura) through isoflavone-mediated antibiosis in soybean cultivar ‘Zhongdou 27’. Theor Appl Genet 2011, 123:1459-1465.
  • [20]Yang K, Moon JK, Jeong N, Chun HK, Kang ST, Back K, Jeong SC: Novel major quantitative trait loci regulating the content of isoflavone in soybean seeds. Genes Genom 2011, 33:685-692.
  • [21]Zhang JY, Ge YN, Sun JM, Han FX, Yu FK, Yan SR, Yang H: Identification of QTLs for major isoflavone components among multiple environments in soybean seeds. Sci Agric Sin 2012, 45:3909-3920.
  • [22]Akond M, Richard B, Ragin B, Herrera H, Kaodi U, Akbay C, Kantartzi SK, Njiti V, Barakat A, Meksem K, Lightfoot DA, Kassem MA: Additional quantitative trait loci and candidate genes for seed isoflavone content in soybean. J Agric Sci 2013, 5:20-33.
  • [23]Akond M, Liu SM, Kantartzi SK, Meksem K, Bellaloui N, Lightfoot DA, Yuan JZ, Wang DC, Kassem MA: Quantitative trait loci for seed isoflavone contents in ‘MD96-5722’ by ‘Spencer’ recombinant inbred lines of soybean. J Agric Food Chem 2014, 62:1464-1468.
  • [24]Wellmann E: UV dose-dependent induction of enzymes related to flavonoid biosynthesis in cell suspension cultures of parsley. FEBS Lett 1975, 51:105-107.
  • [25]Elio GWM,CH, Arjen J, Arnaud G: Modification of flavonoid biosynthesis in crop plants. Phytochemistry 2004, 65:2631-2648.
  • [26]Austin MB, Noel JP: The chalcone synthase superfamily of type III polyketide synthases. Nat Prod Rep 2003, 20:79-110.
  • [27]Du H, Huang YB, Tang YX: Genetic and metabolic engineering of isoflavonoid biosynthesis. Appl Microbiol Biotechnol 2010, 86:1293-1312.
  • [28]Forkmann G, Martens S: Metabolic engineering and applications of flavonoids. Curr Opin Biotechnol 2001, 12:155-160.
  • [29]Joung JY, Kasthuri M, Park JY, Kang WJ, Kim HS, Yoon BS, Joung H, Jeon JH: An overexpression of chalcone reductase of Pueraria montana var. lobata alters biosynthesis of anthocyanin and 50-deoxyflavonoids in transgenic tobacco. Biochem Biophys Res Commun 2003, 3003:326-331.
  • [30]Jung W, Yu O, Lau SC, O’Keefe DP, Odell J, Fader G, McGonigle B: Identification and expression of isoflavone synthase, the key enzyme for biosynthesis of isoflavones in legumes. Nat Biotechnol 2000, 18:208-212.
  • [31]Hao C, Oliver Y, Deyue Y: Polymorphisms of IFS1 and IFS2 gene are associated with isoflavone concentrations in soybean seeds. Plant Sci 2008, 175:505-512.
  • [32]Britsch L, Dedio J, Saedler H, Forkmann G: Molecular characterization of flavanone 3 beta-hydroxylases. Consensus sequence, comparison with related enzymes and the role of conserved histidine residues. Eur J Biochem 1993, 217:745-754.
  • [33]Cheng H, Wang J, Chu S, Yan H-L, Yu D: Diversifying selection on flavanone 3-hydroxylase and isoflavone synthase genes in cultivated soybean and its wild progenitors. PLoS One 2013, 8:e54154.
  • [34]Yu O, McGonigle B: Metabolic engineering of isofavone biosynthesis. Adv Agron 2005, 86:147-190.
  • [35]Yu O, Shi J, Hession AO, Maxwell CA, McGonigle B, Odell JT: Metabolic engineering to increase isoflavone biosynthesis in soybean seed. Phytochemistry 2003, 63:753-763.
  • [36]Yin Z, Meng F, Song H, Wang X, Xu X, Yu D: Expression quantitative trait loci analysis of two genes encoding RUBISCO activase in soybean. Plant Physiol 2010, 152:1625-1637.
  • [37]Jansen R, Nap J: Genetical genomics: the added value from segregation. Trends Genet 2001, 17:388-391.
  • [38]Cheung VG, Conlin LK, Weber TM, Arcaro M, Jen KY, Morley M, Spielman RS: Natural variation in human gene expression assessed in lymphoblastoid cells. Nat Genet 2003, 33:422-425.
  • [39]Goring HH, Curran JE, Johnson MP, Dyer TD, Charlesworth J, Cole SA, Jowett JBM, Abraham LJ, Rainwater DL, Comuzzie AG, Mahaney MC, Almasy L, MacCluer JW, Kissebah AH, Collier GR, Moses EK, Blangero J: Discovery of expression QTLs using large-scale transcriptional profiling in human lymphocytes. Nat Genet 2007, 39:1208-1216.
  • [40]Sasayama D, Hori H, Nakamura S, Miyata R, Teraishi T, Hattori K, Ota M, Yamamoto N, Higuchi T, Amano N, Kunugi H: Identification of single nucleotide polymorphisms regulating peripheral blood mRNA expression with Genome-Wide Significance: an eQTL study in the Japanese population. PLoS One 2013, 8:e54967.
  • [41]DeCook R, Lall S, Nettleton D, Howell SH: Genetic regulation of gene expression during shoot development in Arabidopsis. Genetics 2006, 172:1155-1164.
  • [42]Jordan MC, Somers DJ, Banks TW: Identifying regions of the wheat genome controlling seed development by mapping expression quantitative trait loci. Plant Biotechnol J 2007, 5:442-453.
  • [43]Potokina E, Druka A, Luo Z, Wise R, Waugh R, Kearsey M: Gene expression quantitative trait locus analysis of 16,000 barley genes reveals a complex pattern of genome-wide transcriptional regulation. Plant J 2008, 53:90-101.
  • [44]Chen X, Hackett CA, Niks RE, Hedley PE, Booth C, Druka A, Marcel TC, Vels A, Bayer M, Milne I, Morris J, Ramsay L, Marshall D, Cardle L, Waugh R: An eQTL analysis of partial resistance to Puccinia hordeii in barley. PLoS One 2010, 5(1):e8598.
  • [45]Brem RB, Yvert G, Clinton R, Kruglyak L: Genetic dissection of transcriptional regulation in budding yeast. Science 2002, 296:752-755.
  • [46]Brem RB, Kruglyak L: The landscape of genetic complexity across 5,700 gene expression traits in yeast. Proc Natl Acad Sci U S A 2005, 102:1572-1577.
  • [47]Li Y, Alvarez OA, Gutteling EW, Tijsterman M, Fu J, Riksen JAG, Hazendonk E, Prins P, Plasterk RHA, Jansen RC, Breitling R, Kammenga JE: Mapping determinants of gene expression plasticity by genetical genomics in C. elegans. PLoS Genet 2006, 2:2155-2161.
  • [48]Hughes KA, Ayroles JF, Reedy MM, Drnevich JM, Rowe KC, Ruedi EA, Caceres CE, Paige KN: Segregating variation in the transcriptome: cis regulation and additivity of effects. Genetics 2006, 173:1347-1355.
  • [49]Schadt EE, Monks SA, Drake TA, Lusis AJ, Che N, Colinayo V, Ruff TG, Milligan SB, Lamb JR, Cavet G, Linsley PS, Mao M, Stoughton RB, Friend SH: Genetics of gene expression surveyed in maize, mouse and man. Nature 2003, 22:297-302.
  • [50]Ghazalpour A, Doss S, Zhang B, Wang S, Plaisier S, Castellanos R, Brozell A, Schadt EE, Drake TA, Lusis AJ, Horvath S: Integrating genetic and net-work analysis to characterize genes related to mouse weight. PLoS Genet 2006, 2:e130.
  • [51]Çinar MU, Fan H, Neuhoff C, Groβe-Brinkhaus C: eQTL Analysis and association of MYF6 mRNA expression with meat quality traits in pigs. Kafkas Universitesi Veteriner Fakultesi Dergisi 2012, 18:235-242.
  • [52]Hubner N, Wallace CA, Zimdahl H, Petretto E, Schulz H, Maciver F, Mueller M, Hummel O, Monti J, Zidek V, Musilova A, Kren V, Causton H, Game L, Born G, Schmidt S, Muller A, Cook SA, Kurtz TW, Whittaker J, Pravenec M, Aitman TJ: Integrated transcriptional profiling and linkage analysis for identification of genes underlying disease. Nat Genet 2005, 37:243-253.
  • [53]Kliebenstein D: Quantitative Genomics: analyzing intraspecific variation using global gene expression polymorphisms or eQTL. Annu Rev Plant Biol 2008, 60:93-114.
  • [54]Doss S, Schadt EE, Drake TA, Lusis AJ: Cis-acting expression quantitative trait loci in mice. Genome Res 2005, 15:681-691.
  • [55]Gatti DM, Harrill AH, Wright FA, Threadgill DW, Rusyn I: Replication and narrowing of gene expression quantitative trait loci using inbred mice. Mamm Genom 2009, 20:437-446.
  • [56]Yin Z, Meng F, Song H, Wang X, Chao M, Zhang G, Xu X, Deng D, Yu D: GmFtsH9 expression correlates with in vivo Photosystem II function: Chlorophyll a fluorescence transient analysis and eQTL mapping in soybean. Planta 2011, 234:815-827.
  • [57]Song H, Yin Z, Chao M, Ning L, Zhang D, Yu D: Functional properties and expression quantitative trait loci for phosphate transporter GmPT1 in soybean. Plant Cell Environ 2014, 37:462-472.
  • [58]Bolon YT, Hyten DL, Orf JH, Vance CP, Muehlbauer GJ: eQTL networks reveal complex genetic architecture in the immature soybean seed. Plant Genom 2014, 7:1-14.
  • [59]Brouns F: Soya isoflavones: a new and promising ingredient for the health food sector. Food Res Int 2002, 35:187-193.
  • [60]Bernardo R: Molecular markers and selection for complex traits in plants: learning from the last 20 years. Crop Sci 2008, 48:1649-1664.
  • [61]Sladek R, Hudson TJ: Elucidating cis-and trans-regulatory variation using genetical genomics. Trends Genet 2006, 22:245-250.
  • [62]Ponsuksili S, Murani E, Phatsara C, Schwerin M, Schellander K, Wimmers K: Expression quantitative trait loci analysis of genes in porcine muscle by quantitative real-time RT-PCR compared to microarray data. Heredity 2010, 105:309-317.
  • [63]Druka A, Potokina E, Luo ZW, Bonar N, Druka I, Zhang L, Marshall DF, Steffenson BJ, Close TJ, Wise RP, Kleinhofs A, Williams RW, Kearsey MJ, Waugh R: Exploiting regulatory variation to identify genes and loci underlying quantitative traits in barley. Theor Appl Genet 2008, 117:261-272.
  • [64]Holloway B, Li B: Expression QTLs: applications for crop improvement. Mol Breed 2010, 26:381-391.
  • [65]Sarah IJ, Delkin OG, Lila OV: Flux of transcript patterns during soybean seed development. BMC Genom 2010, 11:136-150.
  • [66]Liu P, Wang CM, Li L, Sun F, Yue GH: Mapping QTL for oil traits and eQTL for oleosin genes in jatropha. BMC Plant Biol 2011, 11:132-140.
  • [67]Wang J, Yu H, Xie W, Xing Y, Yu S, Xu C, Zhang Q: A global analysis of QTLs for expression variations in rice shoots at the early seedling stage. Plant J 2010, 63:1063-1074.
  • [68]Chen X, Guo W, Liu B, Zhang Y, Song X, Cheng Y, Zhang L, Zhang T: Molecular mechanisms of fiber differential development between G. barbadense and G. hirsutum revealed by genetical genomics. PLoS One 2012, 7:e30056.
  • [69]Gilad Y, Rifkin SA, Pritchard JK: Revealing the architecture of gene regulation: the promise of eQTL studies. Trends Genet 2008, 24:408-415.
  • [70]Fehr WR, Caviness CE: Stages of Soybean Development. In Special Report 80, Cooperative Extension Service, Agriculture and Home Economic Experiment Station. Ames, Iowa: Iowa State University; 1977:1-11.
  • [71]Iqbal MJ, Yaegashi S, Njiti VN, Ahsan R, Cryder KL, Lightfoot DA: Gene locus pyramids alter transcript abundance in soybean roots inoculated with Fusarium solani f.sp. glycines. Mol Genet Genomic 2002, 268:407-417.
  • [72]Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 2001, 25:402-408.
  • [73]Zhao G, Wang J, Han Y, Teng W, Sun G, Li W: Identification of QTL underlying the resistance of soybean to pod borer, Leguminivora glycinivorella (Mats. Obraztsov), and correlations with plant, pod and seed traits. Euphytica 2008, 164:275-282.
  • [74]Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W, Hyten DL, Song Q, Thelen JJ, Cheng J, Xu D, Hellsten U, May GD, Yu Y, Sakurai T, Umezawa T, Bhattacharyya MK, Sandhu D, Valliyodan B, Lindquist E, Peto M, Grant D, Shu S, Goodstein D, Barry K, Futrell-Griggs M, Abernathy B, Du J, Tian Z, Zhu L, Gill N: Genome sequence of the palaeopolyploid soybean. Nature 2010, 463:178-183.
  • [75]Zhang J, Yu O: Metabolic engineering of isoflavone biosynthesis in seeds. In Modification of seed composition to promote health and nutrition. In Agronomy Monograph Series Edited by Krishnan H. 2009, 151-177.
  • [76]Lander ES, Green P, Abrahamson J, Barlow A, Daly M, Lincoln S, Newburg L: Mapmaker: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1987, 1:174-181.
  • [77]Zeng Z: Theoretical basis of separation of multiple linked gene effects on mapping quantitative trait loci. Proc Natl Acad Sci U S A 1993, 90:10972-10976.
  • [78]Voorrips R: MapChart: software for the graphical presentation of linkage maps and QTL. J Hered 2002, 93:77.
  • [79]Mehrabian M, Allayee H, Stockton J, Lum PY, Drake TA, Castellani LW, Suh M, Armour C, Edwards S, Lamb J, Lusis AJ, Schadt EE: Integrating genotypic and expression data in a segregating mouse population to identify 5-lipoxygenase as a susceptibility gene for obesity and bone traits. Nat Genet 2005, 37:1224-1233.
  • [80]Sonderby IE, Hansen BG, Bjarnholt N, Ticconi C, Halkier BA, Kliebenstein DJ: A systems biology approach identifies a R2R3 MYB gene subfamily with distinct and overlapping functions in regulation of aliphatic glucosinolates. PLoS One 2005, 2:e1322.
  • [81]Moscou MJ, Lauter N, Steffenson B, Wise RP: Quantitative and qualitative stem rust resistance factors in barley are associated with transcriptional suppression of defense regulons. PLoS Genet 2011, 7:e1002208.
  文献评价指标  
  下载次数:15次 浏览次数:12次