BMC Evolutionary Biology | |
Evolutionary interactions between haemagglutinin and neuraminidase in avian influenza | |
Andrew J Leigh Brown1  Jonathan P Bollback2  Dorita Avila1  Samantha J Lycett1  Melissa J Ward1  | |
[1] Institute for Evolutionary Biology, University of Edinburgh, Ashworth Building, West Mains Road, Edinburgh EH9 3JT, Scotland, UK;IST Austria, Am Campus 1, Klosterneuburg 3400, Austria | |
关键词: Subtype; Selection; Reassortment; Evolution; Influenza; | |
Others : 1085675 DOI : 10.1186/1471-2148-13-222 |
|
received in 2013-06-28, accepted in 2013-09-16, 发布年份 2013 | |
【 摘 要 】
Background
Reassortment between the RNA segments encoding haemagglutinin (HA) and neuraminidase (NA), the major antigenic influenza proteins, produces viruses with novel HA and NA subtype combinations and has preceded the emergence of pandemic strains. It has been suggested that productive viral infection requires a balance in the level of functional activity of HA and NA, arising from their closely interacting roles in the viral life cycle, and that this functional balance could be mediated by genetic changes in the HA and NA. Here, we investigate how the selective pressure varies for H7 avian influenza HA on different NA subtype backgrounds.
Results
By extending Bayesian stochastic mutational mapping methods to calculate the ratio of the rate of non-synonymous change to the rate of synonymous change (dN/dS), we found the average dN/dS across the avian influenza H7 HA1 region to be significantly greater on an N2 NA subtype background than on an N1, N3 or N7 background. Observed differences in evolutionary rates of H7 HA on different NA subtype backgrounds could not be attributed to underlying differences between avian host species or virus pathogenicity. Examination of dN/dS values for each subtype on a site-by-site basis indicated that the elevated dN/dS on the N2 NA background was a result of increased selection, rather than a relaxation of selective constraint.
Conclusions
Our results are consistent with the hypothesis that reassortment exposes influenza HA to significant changes in selective pressure through genetic interactions with NA. Such epistatic effects might be explicitly accounted for in future models of influenza evolution.
【 授权许可】
2013 Ward et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150113175524833.pdf | 1399KB | download | |
Figure 6. | 110KB | Image | download |
Figure 5. | 85KB | Image | download |
Figure 4. | 56KB | Image | download |
Figure 3. | 55KB | Image | download |
Figure 2. | 60KB | Image | download |
Figure 1. | 96KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
【 参考文献 】
- [1]Webster RG, Bean WJ, Gorman OT, Chambers TM, Kawaoka Y: Evolution and Ecology of Influenza A Viruses. Microbiol Rev 1992, 56:152-179.
- [2]Fouchier RAM, Munster V, Wallensten A, Bestebroer TM, Herfst S, Smith D, Rimmelzwaan GF, Olsen B, Osterhaus ADME: Characterization of a novel influenza a virus hemagglutinin subtype (H16) obtained from black-headed gulls. J Virol 2005, 79:2814-2822.
- [3]Webster RG, Krauss S, Hulse-Post D, Sturm-Ramirez K: Evolution of influenza a viruses in wild birds. J Wildlife Dis 2007, 43:S1-S6.
- [4]Kaverin NV, Matrosovich MN, Gambaryan AS, Rudneva IA, Shilov AA, Varich NL, Makarova NV, Kropotkina EA, Sinitsin BV: Intergenic HA-NA interactions in influenza A virus: postreassortment substitutions of charged amino acid in the hemagglutinin of different subtypes. Virus Res 2000, 66:123-129.
- [5]Alexander DJ: Report on avian influenza in the Eastern Hemisphere during 1997–2002. Avian Dis 2003, 47:792-797.
- [6]Munster VJ, Baas C, Lexmond P, Waldenstrom J, Wallensten A, Fransson T, Rimmelzwaan GF, Beyer WEP, Schutten M, Olsen B, et al.: Spatial, temporal, and species variation in prevalence of influenza A viruses in wild migratory birds. PLoS Pathog 2007, 3:630-638.
- [7]Wagner R, Matrosovich M, Klenk HD: Functional balance between haemagglutinin and neuraminidase in influenza virus infections. Rev Med Virol 2002, 12:159-166.
- [8]Wagner R, Wolff T, Herwig A, Pleschka S, Klenk HD: Interdependence of hemagglutinin glycosylation and neuraminidase as regulators of influenza virus growth: a study by reverse genetics. J Virol 2000, 74:6316-6323.
- [9]Kaverin NV, Gambaryan AS, Bovin NV, Rudneva IA, Shilov AA, Khodova OM, Varich NL, Sinitsin BV, Makarova NV, Kropotkina EA: Postreassortment changes in influenza A virus hemagglutinin restoring HA-NA functional match. Virology 1998, 244:315-321.
- [10]Baigent SJ, Bethell RC, McCauley JW: Genetic analysis reveals that both haemagglutinin and neuraminidase determine the sensitivity of naturally occurring avian influenza viruses to zanamivir in vitro. Virology 1999, 263:323-338.
- [11]Gubareva LV, Bethell R, Hart GJ, Murti KG, Penn CR, Webster RG: Characterization of mutants of influenza A virus selected with the neuraminidase inhibitor 4-guanidino-Neu5Ac2en. J Virol 1996, 70:1818-1827.
- [12]McKimmBreschkin JL, Blick TJ, Sahasrabudhe A, Tiong T, Marshall D, Hart GJ, Bethell RC, Penn CR: Generation and characterization of variants of NWS/G70C influenza virus after in vitro passage in 4-amino-Neu5Ac2en and 4-guanidino-Neu5Ac2en. Antimicrob Agents Chemother 1996, 40:40-46.
- [13]McKimm-Breschkin JL, Sahasrabudhe A, Blick TJ, McDonald M, Colman PM, Hart GJ, Bethell RC, Varghese JN: Mutations in a conserved residue in the influenza virus neuraminidase active site decreases sensitivity to Neu5Ac2en-derived inhibitors. J Virol 1998, 72:2456-2462.
- [14]Blick TJ, Sahasrabudhe A, McDonald M, Owens IJ, Morley PJ, Fenton RJ, McKimm-Breschkin JL: The interaction of neuraminidase and hemagglutinin mutations in influenza virus in resistance to 4-guanidino-Neu5Ac2en. Virology 1998, 246:95-103.
- [15]Baigent SJ, McCauley JW: Glycosylation of haemagglutinin and stalk-length of neuraminidase combine to regulate the growth of avian influenza viruses in tissue culture. Virus Res 2001, 79:177-185.
- [16]Matrosovich M, Zhou N, Kawaoka Y, Webster R: The surface glycoproteins of H5 influenza viruses isolated from humans, chickens, and wild aquatic birds have distinguishable properties. J Virol 1999, 73:1146-1155.
- [17]Banks J, Speidel ES, Moore E, Plowright L, Piccirillo A, Capua I, Cordioli P, Fioretti A, Alexander DJ: Changes in the haemagglutinin and the neuraminidase genes prior to the emergence of highly pathogenic H7N1 avian influenza viruses in Italy. Arch Virol 2001, 146:963-973.
- [18]Scholtissek C, Rohde W, Vonhoyningen V, Rott R: Origin of Human Influenza-Virus Subtypes H2N2 and H3N2. Virology 1978, 87:13-20.
- [19]Kawaoka Y, Krauss S, Webster RG: Avian-to-Human Transmission of the Pb1 Gene of Influenza-a Viruses in the 1957 and 1968 Pandemics. J Virol 1989, 63:4603-4608.
- [20]Smith GJD, Vijaykrishna D, Bahl J, Lycett SJ, Worobey M, Pybus OG, Ma SK, Cheung CL, Raghwani J, Bhatt S, et al.: Origins and evolutionary genomics of the 2009 swine-origin H1N1 influenza A epidemic. Nature 2009, 459:1122-U1107.
- [21]Suzuki Y, Nei M: Origin and evolution of influenza virus hemagglutinin genes. Mol Biol Evol 2002, 19:501-509.
- [22]Chen RB, Holmes EC: Avian influenza virus exhibits rapid evolutionary dynamics. Mol Biol Evol 2006, 23:2336-2341.
- [23]Rambaut A, Pybus OG, Nelson MI, Viboud C, Taubenberger JK, Holmes EC: The genomic and epidemiological dynamics of human influenza A virus. Nature 2008, 453:615-U612.
- [24]Miyata T, Yasunaga T: Molecular Evolution of Messenger-RNA - a Method for Estimating Evolutionary Rates of Synonymous and Amino-Acid Substitutions from Homologous Nucleotide-Sequences and Its Application. J Mol Evol 1980, 16:23-36.
- [25]Nei M, Gojobori T: Simple Methods for Estimating the Numbers of Synonymous and Nonsynonymous Nucleotide Substitutions. Mol Biol Evol 1986, 3:418-426.
- [26]Sugita S, Yoshioka Y, Itamura S, Kanegae Y, Oguchi K, Gojobori T, Nerome K, Oya A: Molecular Evolution of Hemagglutinin Genes of H1N1 Swine and Human Influenza-A Viruses. J Mol Evol 1991, 32:16-23.
- [27]Kosakovsky Pond SL, Poon AFY, Brown AJL, Frost SDW: A maximum likelihood method for detecting directional evolution in protein sequences and its application to influenza a virus. Mol Biol Evol 2008, 25:1809-1824.
- [28]Fitch WM, Leiter JME, Li XQ, Palese P: Positive Darwinian Evolution in Human Influenza A Viruses. Proc Natl Acad Sci USA 1991, 88:4270-4274.
- [29]Ina Y, Gojobori T: Statistical Analysis of Nucleotide Sequences of the Hemagglutinin Gene of Human Influenza A Viruses. Proc Natl Acad Sci USA 1994, 91:8388-8392.
- [30]Bush RM, Fitch WM, Bender CA, Cox NJ: Positive selection on the H3 hemagglutinin gene of human influenza virus A. Mol Biol Evol 1999, 16:1457-1465.
- [31]Abbas MA, Spackman E, Swayne DE, Ahmed Z, Sarmento L, SiddiquE N, Naeem K, Hameed A, Rehmani S: Sequence and phylogenetic analysis of H7N3 avian influenza viruses isolated from poultry in Pakistan. Virol J 2010, 7:1995-2004.
- [32]FAO: Highly Pathogenic Avian Influenza in Mexico (H7N3). EMPRES WATCH: A significant threat to poultry production not to be underestimated; 2012:26.
- [33]CDC: Notes from the field: Highly pathogenic avian influenza A (H7N3) virus infection in two poultry workers - Jalisco, Mexico, July 2012. MMWR Morb Mortal Wkly Rep 2012, 14:726-727.
- [34]Fouchier RAM, Schneeberger PM, Rozendaal FW, Broekman JM, Kemink SAG, Munstert V, Kuiken T, Rimmelzwaan GF, Schutten M, van Doornum GJJ, et al.: Avian influenza A virus (H7N7) associated with human conjunctivitis and a fatal case of acute respiratory distress syndrome. Proc Natl Acad Sci USA 2004, 101:1356-1361.
- [35]Belser JA, Bridges CB, Katz JM, Tumpey TM: Past, Present, and Possible Future Human Infection with Influenza Virus A Subtype H7. Emerg Infect Dis 2009, 15:859-865.
- [36]Kurtz J, Manvell RJ, Banks J: Avian influenza virus isolated from a woman with conjunctivitis. Lancet 1996, 348:901-902.
- [37]Yu H, Cowling BJ, Feng L, Lau EH, Liao Q, Tsang TK, Peng Z, Wu P, Liu F, Fang VJ, et al.: Human infection with avian influenza A H7N9 virus: an assessment of clinical severity. Lancet 2013, 382:138-145.
- [38]Lam TT-Y, Wang J, Shen Y, Zhou B, Duan L, Cheung C-L, Ma C, Lycett SJ, Leung CY-H, Chen X, et al.: The genesis and source of the H7N9 influenza viruses causing human infections in China. advance online publication: Nature; 2013.
- [39]Nielsen R: Mutations as missing data: Inferences on the ages and distributions of nonsynonymous and synonymous mutations. Genetics 2001, 159:401-411.
- [40]Nielsen R: Mapping mutations on phylogenies. Syst Biol 2002, 51:729-739.
- [41]Spackman E, Senne DA, Davison S, Suarez DL: Sequence analysis of recent H7 avian influenza viruses associated with three different outbreaks in commercial poultry in the United States. J Virol 2003, 77:13399-13402.
- [42]Lee CW, Lee YJ, Senne DA, Suarez DL: Pathogenic potential of North American H7N2 avian influenza virus: A mutagenesis study using reverse genetics. Virology 2006, 353:388-395.
- [43]Banks J, Speidel EC, McCauley JW, Alexander DJ: Phylogenetic analysis of H7 haemagglutinin subtype influenza A viruses. Arch Virol 2000, 145:1047-1058.
- [44]Bulach D, Halpin R, Spiro D, Pomeroy L, Janies D, Boyle DB: Molecular Analysis of H7 Avian Influenza Viruses from Australia and New Zealand: Genetic Diversity and Relationships from 1976 to 2007. J Virol 2010, 84:9957-9966.
- [45]Lebarbenchon C, Stallknecht DE: Host shifts and molecular evolution of H7 avian influenza virus hemagglutinin. Virol J 2011., 8
- [46]Olsen B, Munster VJ, Wallensten A, Waldenstrom J, Osterhaus ADME, Fouchier RAM: Global patterns of influenza A virus in wild birds. Science 2006, 312:384-388.
- [47]Spackman E, McCracken KG, Winker K, Swayne DE: H7N3 avian influenza virus found in a South American wild duck is related to the Chilean 2002 poultry outbreak, contains genes from equine and north American wild bird lineages, and is adapted to domestic turkeys. J Virol 2006, 80:7760-7764.
- [48]Rohm C, Horimoto T, Kawaoka Y, Suss J, Webster RG: Do Hemagglutinin Genes of Highly Pathogenic Avian Influenza-Viruses Constitute Unique Phylogenetic Lineages. Virology 1995, 209:664-670.
- [49]Bollback JP: SIMMAP: Stochastic character mapping of discrete traits on phylogenies. BMC Bioinformatics 2006, 7:88. BioMed Central Full Text
- [50]Kosakovsky Pond SL, Frost SDW: Not so different after all: A comparison of methods for detecting amino acid sites under selection. Mol Biol Evol 2005, 22:1208-1222.
- [51]Sun S, Wang Q, Zhao F, Chen W, Li Z: Prediction of Biological Functions on Glycosylation Site Migrations in Human Influenza H1N1 Viruses. PLoS One 2012, 7:e32119.
- [52]Skehel JJ, Wiley DC: Receptor binding and membrane fusion in virus entry: The influenza hemagglutinin. Annu Rev Biochem 2000, 69:531-569.
- [53]Daniels RS, Jeffries S, Yates P, Schild GC, Rogers GN, Paulson JC, Wharton SA, Douglas AR, Skehel JJ, Wiley DC: The Receptor-Binding and Membrane-Fusion Properties of Influenza-Virus Variants Selected Using Anti-Hemagglutinin Monoclonal-Antibodies. EMBO J 1987, 6:1459-1465.
- [54]Connor RJ, Kawaoka Y, Webster RG, Paulson JC: Receptor Specificity in Human, Avian, and Equine H2 and H3 Influenza-Virus Isolates. Virology 1994, 205:17-23.
- [55]Live-bird markets in the Northeastern United States: a source of avian influenza in commercial poultry[ http://birdflubook.com/resources/senne19.pdf webcite]
- [56]Yang H, Chen LM, Carney PJ, Donis RO, Stevens J: Structures of Receptor Complexes of a North American H7N2 Influenza Hemagglutinin with a Loop Deletion in the Receptor Binding Site. PLoS Pathog 2010, 6:6.
- [57]Panigrahy B, Senne DA, Pedersen JC: Avian influenza virus subtypes inside and outside the live bird markets, 1993–2000: A spatial and temporal relationship. Avian Dis 2002, 46:298-307.
- [58]Suarez DL, Spackman E, Senne DA: Update on molecular epidemiology of H1, H5, and H7 influenza virus infections in poultry in North America. Avian Dis 2003, 47:888-897.
- [59]Pappas C, Matsuoka Y, Swayne DE, Donis RO: Development and evaluation of an influenza virus subtype H7N2 vaccine candidate for pandemic preparedness. Clin Vaccine Immunol 2007, 14:1425-1432.
- [60]CDC: CDC Update: influenza activity - United States, 2003–04 season. MMWR Morb Mortal Wkly Rep 2004, 53:284-287.
- [61]CDC: CDC Update: Influenza activity - United States and worldwide, 2003–04 season, and compositionof the 2004–05 influenza vaccine. MMWR Morb Mortal Wkly Rep 2004, 53:547-552.
- [62]Belser JA, Blixt O, Chen LM, Pappas C, Maines TR, Van Hoeven N, Donis R, Busch J, McBride R, Paulson JC, et al.: Contemporary North American influenza H7 viruses possess human receptor specificity: Implications for virus transmissibility. Proc Natl Acad Sci USA 2008, 105:7558-7563.
- [63]Gambaryan A, Webster R, Matrosovich M: Differences between influenza virus receptors on target cells of duck and chicken. Arch Virol 2002, 147:1197-1208.
- [64]Wan HQ, Perez DR: Quail carry sialic acid receptors compatible with binding of avian and human influenza viruses. Virology 2006, 346:278-286.
- [65]Guo CT, Takahashi N, Yagi H, Kato K, Takahashi T, Yi SQ, Chen Y, Ito T, Otsuki K, Kida H, et al.: The quail and chicken intestine have sialyl-galactose sugar chains responsible for the binding of influenza A viruses to human type receptors. Glycobiology 2007, 17:713-724.
- [66]USAHA: United States Animal Health Association. Report of the Committee on Transmissible Diseases of Poultry and Other Avian Species; 2007.
- [67]Brown JM, Hedtke SM, Lemmon AR, Lemmon EM: When Trees Grow Too Long: Investigating the Causes of Highly Inaccurate Bayesian Branch-Length Estimates. Syst Biol 2010, 59:145-161.
- [68]Yang ZH: PAML: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci 1997, 13:555-556.
- [69]Yang ZH: PAML 4: Phylogenetic analysis by maximum likelihood. Mol Biol Evol 2007, 24:1586-1591.
- [70]Yang ZH: Likelihood ratio tests for detecting positive selection and application to primate lysozyme evolution. Mol Biol Evol 1998, 15:568-573.
- [71]Yang ZH, Nielsen R: Synonymous and nonsynonymous rate variation in nuclear genes of mammals. J Mol Evol 1998, 46:409-418.
- [72]Kimura M: Genetic Variability Maintained in a Finite Population Due to Mutational Production of Neutral and Nearly Neutral Isoalleles. Genet Res 1968, 11:247.
- [73]Simmonds P, Smith DB: Structural constraints on RNA virus evolution. J Virol 1999, 73:5787-5794.
- [74]Senne DA, Suarez DL, Pedersen JC, Panigrahy B: Molecular and biological characteristics of H5 and H7 avian influenza viruses in live-bird markets of the northeastern United States 1994–2001. Avian Dis 2003, 47:898-904.
- [75]Webster RG: Influenza: An emerging disease. Emerg Infect Dis 1998, 4:436-441.
- [76]Li KS, Guan Y, Wang J, Smith GJD, Xu KM, Duan L, Rahardjo AP, Puthavathana P, Buranathai C, Nguyen TD, et al.: Genesis of a highly pathogenic and potentially pandemic H5N1 influenza virus in eastern Asia. Nature 2004, 430:209-213.
- [77]Shackelton LA, Parrish CR, Truyen U, Holmes EC: High rate of viral evolution associated with the emergence of carnivore parvovirus. Proc Natl Acad Sci USA 2005, 102:379-384.
- [78]Zhang XS, De Angelis D, White PJ, Charlett A, Pebody RG, McCauley J: Co-circulation of influenza A virus strains and emergence of pandemic via reassortment: The role of cross-immunity. Epidemics 2013, 5:20-33.
- [79]Xu R, Zhu XY, McBride R, Nycholat CM, Yu WL, Paulson JC, Wilson IA: Functional Balance of the Hemagglutinin and Neuraminidase Activities Accompanies the Emergence of the 2009 H1N1 Influenza Pandemic. J Virol 2012, 86:9221-9232.
- [80]Bao Y, Bolotov P, Dernovoy D, Kiryutin B, Zalavsky L, Tatusova T, Ostell J, Lipman D: The Influenza Virus Resource at the National Center for Biotechnology Information. J Virol 2008, 82:596-601.
- [81]Alexander DJ: Highly pathogenic avian influenza. In OIE Manual of Standards for Diagnostic Tests and Vaccines. Paris: OIE WOfAH; 2000:212-220.
- [82]Hall TA: BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 1999, 41:95-98.
- [83]Perdue ML, Garcia M, Senne D: Virulence-associated sequence duplication at the hemagglutinin cleavage site of avian influenza viruses. Virus Res 1997, 49:173-186.
- [84]Palese P, Shaw ML: Orthomyxoviridae: the viruses and their replication. In Fields' Virology; 2007:1647-1689.
- [85]Kosakovsky Pond SL, Posada D, Gravenor MB, Woelk CH, Frost SDW: Automated phylogenetic detection of recombination using a genetic algorithm. Mol Biol Evol 2006, 23:1891-1901.
- [86]Kosakovsky Pond SL, Frost SDW, Muse SV: HyPhy: hypothesis testing using phylogenies. Bioinformatics 2005, 21:676-679.
- [87]Kosakovsky Pond SL, Posada D, Gravenor MB, Woelk CH, Frost SDW: GARD: a genetic algorithm for recombination detection. Bioinformatics 2006, 22:3096-3098.
- [88]Xia XH, Xie Z, Salemi M, Chen L, Wang Y: An index of substitution saturation and its application. Mol Phylogenet Evol 2003, 26:1-7.
- [89]Xia XH: DAMBE5: A Comprehensive Software Package for Data Analysis in Molecular Biology and Evolution. Mol Biol Evol 2013, 30:1720-1728.
- [90]Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O: New Algorithms and Methods to Estimate Maximum-Likelihood Phylogenies: Assessing the Performance of PhyML 3.0. Syst Biol 2010, 59:307-321.
- [91]Tavaré S: Some probabilistic and statistical problems in the analysis of DNA sequences. Lec Math Life Sci 1986, 17:57-86.
- [92]Huelsenbeck JP, Ronquist F: MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 2001, 17:754-755.
- [93]Ronquist F, Huelsenbeck JP: MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 2003, 19:1572-1574.
- [94]Rambaut A, Drummond AJ: Tracer v1.4. 2007. Available from http://beast.bio.ed.ac.uk/Tracer webcite
- [95]Huelsenbeck JP, Nielsen R, Bollback JP: Stochastic mapping of morphological characters. Syst Biol 2003, 52:131-158.
- [96]Felsenstein J: Evolutionary Trees from DNA-Sequences - a Maximum-Likelihood Approach. J Mol Evol 1981, 17:368-376.
- [97]Bollback JP: Posterior mapping and predictive distributions. In Statistical methods in Molecular Evolution. Edited by Nielsen R. New York, USA: Springer Verlag New York, Inc; 2005:439-462.
- [98]Jukes TH, Cantor CR: Evolution of protein molecules. In In Mammalian Protein Metabolism. 3rd edition. New York: Academic Press: Munro HH; 1969:21-132.
- [99]Nobusawa E, Aoyama T, Kato H, Suzuki Y, Tateno Y, Nakajima K: Comparison of Complete Amino-Acid-Sequences and Receptor-Binding Properties among 13 Serotypes of Hemagglutinins of Influenza a-Viruses. Virology 1991, 182:475-485.
- [100]Chen M-H, Shao Q-M: Monte Carlo Estimation of Bayesian Credible and HPD Intervals. J Comp Graph Stat 1999, 8:69-92.
- [101]Smith B: boa: An R Package for MCMC Output Convergence Assessment and Posterior Inference. J Stat Soft 2007, 21:1-37.