期刊论文详细信息
BMC Genomics
An integrated genomic and metabolomic framework for cell wall biology in rice
Liangcai Peng4  Staffan Persson1  Sebastian Klie2  Yangting Wang3  Lingqiang Wang3  Guosheng Xie3  Fen Tu4  Jing Zhang3  Mingliang Zhang3  Yongqing Feng3  Weihua Zou3  Kai Guo4 
[1] School of Botany, University of Melbourne, Melbourne, VIC 3010, Australia;Max-Planck-Institute for Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany;College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China;College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
关键词: Metabolomics;    Co-expression network;    Cell wall;    Rice;   
Others  :  1216475
DOI  :  10.1186/1471-2164-15-596
 received in 2013-10-02, accepted in 2014-07-09,  发布年份 2014
PDF
【 摘 要 】

Background

Plant cell walls are complex structures that full-fill many diverse functions during plant growth and development. It is therefore not surprising that thousands of gene products are involved in cell wall synthesis and maintenance. However, functional association for the majority of these gene products remains obscure. One useful approach to infer biological associations is via transcriptional coordination, or co-expression of genes. This approach has proved useful for several biological processes. Nevertheless, combining co-expression with other large-scale measurements may improve the biological inferences.

Results

In this study, we used a combined approach of co-expression and cell wall metabolomics to obtain new insight into cell wall synthesis in rice. We initially created a weighted gene co-expression network from publicly available datasets, and then established a comprehensive cell wall dataset by determining cell wall compositions from 29 tissues that almost cover the whole life cycle of rice. We subsequently combined the datasets through the conversion of co-expressed gene modules into eigen-vectors, representing expression profiles for the genes in the modules, and performed comparative analyses against the cell wall contents. Here, we made three major discoveries. First, we confirmed our approach by finding primary and secondary wall cellulose biosynthesis modules, respectively. Second, we found co-expressed modules that strongly correlated with re-organization of the secondary cell walls and with modifications and degradation of hemicellulosic structures. Third, we inferred that at least one module is likely to play a regulatory role in the production of G-rich lignification.

Conclusions

Here, we integrated transcriptomic associations and cell wall metabolism and found that certain co-expressed gene modules are positively correlated with distinct cell wall characteristics. We propose that combining multiple data-types, such as coordinated transcription and cell wall analyses, may be a useful approach to glean new insight into biological processes. The combination of multiple datasets, as illustrated here, can further improve the functional inferences that typically are generated via a single type of datasets. In addition, our data extend the typical co-expression approach to allow deeper insight into cell wall biology in rice.

【 授权许可】

   
2014 Guo et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150630182550717.pdf 1165KB PDF download
Figure 5. 80KB Image download
Figure 4. 69KB Image download
Figure 3. 85KB Image download
Figure 2. 112KB Image download
Figure 1. 64KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Lee I, Ambaru B, Thakkar P, Marcotte EM, Rhee SY: Rational association of genes with traits using a genome-scale gene network for Arabidopsis thaliana. Nat Biotechnol 2010, 28:149-156.
  • [2]Lee HK, Hsu AK, Sajdak J, Qin J, Pavlidis P: Coexpression analysis of human genes across many microarray data sets. Genome Res 2004, 14:1085-1094.
  • [3]Persson S, Wei H, Milne J, Page GP, Somerville CR: Identification of genes required for cellulose synthesis by regression analysis of public microarray data sets. Proc Natl Acad Sci U S A 2005, 102:8633-8638.
  • [4]Stuart JM, Segal E, Koller D, Kim SK: A gene-coexpression network for global discovery of conserved genetic modules. Science 2003, 302:249-255.
  • [5]Ruprecht C, Mutwil M, Saxe F, Eder M, Nikoloski Z, Persson S: Large-scale co-expression approach to dissect secondary cell wall formation across plant species. Front Plant Sci 2011, 2:23.
  • [6]Atias O, Chor B, Chamovitz D: Large-scale analysis of Arabidopsis transcription reveals a basal co-regulation network. BMC Syst Biol 2009, 3:86.
  • [7]Mao L, Van Hemert JL, Dash S, Dickerson JA: Arabidopsis gene co-expression network and its functional modules. BMC Bioinformatics 2009, 10:346.
  • [8]Mentzen WI, Peng J, Ransom N, Nikolau BJ, Wurtele ES: Articulation of three core metabolic processes in Arabidopsis: fatty acid biosynthesis leucine catabolism and starch metabolism. BMC Plant Biol 2008, 8:76.
  • [9]Mutwil M, Usadel B, Schütte M, Loraine A, Ebenhöh O, Persson S: Assembly of an interactive correlation network for the Arabidopsis genome using a novel heuristic clustering algorithm. Plant Physiol 2010, 152:29-43.
  • [10]Wang Y, Hu Z, Yang Y, Chen X, Chen G: Function annotation of an SBP-box gene in Arabidopsis based on analysis of co-expression networks and promoters. Int J Mol Sci 2009, 10:116-132.
  • [11]Wei H, Persson S, Mehta T, Srinivasasainagendra V, Chen L, Page GP, Somerville CR, Loraine A: Transcriptional coordination of the metabolic network in Arabidopsis. Plant Physiol 2006, 142:762-774.
  • [12]Faccioli P, Provero P, Herrmann C, Stanca A, Morcia C, Terzi V: From single genes to co-expression networks: extracting knowledge from barley functional genomics. Plant Mol Biol 2005, 58:739-750.
  • [13]Ficklin SP, Luo F, Feltus FA: The association of multiple interacting genes with specific phenotypes in rice using gene coexpression networks. Plant Physiol 2010, 154:13-24.
  • [14]Lee TH, Kim YK, Pham TTM, Song SI, Kim JK, Kang KY, An G, Jung KH, Galbraith DW, Kim M: RiceArrayNet: a database for correlating gene expression from transcriptome profiling and its application to the analysis of coexpressed genes in rice. Plant Physiol 2009, 151:16-33.
  • [15]Ogata Y, Suzuki H, Sakurai N, Shibata D: CoP: a database for characterizing co-expressed gene modules with biological information in plants. Bioinformatics 2010, 26:1267-1268.
  • [16]Edwards KD, Bombarely A, Story GW, Allen F, Mueller LA, Coates SA, Jones L: TobEA: an atlas of tobacco gene expression from seed to senescence. BMC Genomics 2010, 11:142.
  • [17]Ficklin SP, Feltus FA: Gene coexpression network alignment and conservation of gene modules between two grass species: maize and rice. Plant Physiol 2011, 156:1244-1256.
  • [18]Manfield IW, Jen CH, Pinney JW, Michalopoulos I, Bradford JR, Gilmartin PM, Westhead DR: Arabidopsis Co-expression Tool (ACT): web server tools for microarray-based gene expression analysis. Nucleic Acids Res 2006, 34:W504-W509.
  • [19]Obayashi T, Hayashi S, Saeki M, Ohta H, Kinoshita K: ATTED-II provides coexpressed gene networks for Arabidopsis. Nucleic Acids Res 2009, 37:D987-D991.
  • [20]Vandepoele K, Quimbaya M, Casneuf T, De Veylder L, Van de Peer Y: Unraveling transcriptional control in Arabidopsis using cis-regulatory elements and coexpression networks. Plant Physiol 2009, 150:535-546.
  • [21]Mutwil M, Klie S, Tohge T, Giorgi FM, Wilkins O, Campbell MM, Fernie AR, Usadel B, Nikoloski Z, Persson S: PlaNet: combined sequence and expression comparisons across plant networks derived from seven species. Plant Cell 2011, 23:895-910.
  • [22]Higashi Y, Saito K: Network analysis for gene discovery inplant specialized metabolism. Plant Cell Environ 2013, 36:1587-1606.
  • [23]Somerville CR, Bauer S, Brininstool G, Facette M, Hamann T, Milne J, Osborne E, Paredez A, Persson S, Raab T: Toward a systems approach to understanding plant cell walls. Science 2004, 306:2206-2211.
  • [24]Zhang W, Yi Z, Huang J, Li F, Hao B, Li M, Hong S, Lv Y, Sun W, Arthur R, Hu F, Peng J, Peng L: Three lignocellulose features that distinctively affect biomass enzymatic digestibility under NaOH and H2SO4 pretreatments in Miscanthus. Bioresour Technol 2013, 130:30-37.
  • [25]Smook GA: Handbook for Pulp and Paper Technologists. Vancouver: Angus Wilde Publications; 1992:163-183.
  • [26]Scheller HV, Ulvskov P: Hemicelluloses. Annu Rev Plant Biol 2010, 61:263-289.
  • [27]Zhao Q, Dixon RA: Transcriptional networks for lignin biosynthesis: more complex than we thought? Trends Plant Sci 2011, 16:227-233.
  • [28]Sun H, Li Y, Feng S, Zou W, Guo K, Fan C, Si S, Peng L: Analysis of five rice 4-coumarate: coenzyme A ligase enzyme activity and stress response for potential roles in lignin and flavonoid biosynthesis in rice. Biochem Biophys Res Commun 2012, 430:1151-1156.
  • [29]Carpita N, Tierney M, Campbell M: Molecular biology of the plant cell wall: searching for the genes that define structure architecture and dynamics. Plant Mol Biol 2001, 47:1-5.
  • [30]Torney F, Moeller L, Scarpa A, Wang K: Genetic engineering approaches to improve bioethanol production from maize. Curr Opin Biotechnol 2007, 18:193-199.
  • [31]Xie G, Peng L: Genetic engineering of energy crops: a strategy for biofuel production in China. J Integr Plant Biol 2011, 53:143-150.
  • [32]Turner SR, Somerville CR: Collapsed xylem phenotype of Arabidopsis identifies mutants deficient in cellulose deposition in the secondary cell wall. Plant Cell 1997, 9:689-701.
  • [33]Arioli T, Peng L, Betzner AS, Burn J, Wittke W, Herth W, Camilleri C, Höfte H, Plazinski J, Birch R: Molecular analysis of cellulose biosynthesis in Arabidopsis. Science 1998, 279:717-720.
  • [34]Taylor NG, Scheible WR, Cutler S, Somerville CR, Turner SR: The irregular xylem3 locus of Arabidopsis encodes a cellulose synthase required for secondary cell wall synthesis. Plant Cell 1999, 11:769-779.
  • [35]Taylor NG, Laurie S, Turner SR: Multiple cellulose synthase catalytic subunits are required for cellulose synthesis in Arabidopsis. Plant Cell 2000, 12:2529-2539.
  • [36]Burk DH, Liu B, Zhong R, Morrison WH, Ye Z: A Katanin-like Protein Regulates Normal Cell Wall Biosynthesis and Cell Elongation. Plant Cell 2001, 13:807-827.
  • [37]Peng L, Kawagoe Y, Hogan P, Delmer D: Sitosterol-beta-glucoside as primer for cellulose synthesis in plants. Science 2002, 295:147-150.
  • [38]Zhong R, Burk DH, Morrison WH, Ye Z: A kinesin-like protein is essential for oriented deposition of cellulose microfibrils and cell wall strength. Plant Cell 2002, 14:3101-3117.
  • [39]Brown DM, Zeef LAH, Ellis J, Goodacre R, Turner SR: Identification of novel genes in Arabidopsis involved in secondary cell wall formation using expression profiling and reverse genetics. Plant Cell 2005, 17:2281-2295.
  • [40]Brown DM, Goubet F, Wong VW, Goodacre R, Stephens E, Dupree P, Turner SR: Comparison of five xylan synthesis mutants reveals new insight into the mechanisms of xylan synthesis. Plant J 2007, 52:1154-1168.
  • [41]Li A, Xia T, Xu W, Chen T, Li X, Fan J, Wang R, Feng S, Wang Y, Wang B, Peng L: An integrative analysis of four CESA isoforms specific for fiber cellulose production between Gossypium hirsutum and Gossypium barbadense. Planta 2013, 237:1585-1597.
  • [42]Wang L, Guo K, Li Y, Tu Y, Hu H, Wang B, Cui X, Peng L: Expression profiling and integrative analysis of the CESA/CSL superfamily in rice. BMC Plant Biol 2010, 10:282.
  • [43]Xie G, Yang B, Xu Z, Li F, Guo K, Zhang M, Wang L, Zou W, Wang Y, Peng L: Global identification of multiple OsGH9 family members and their involvement in cellulose crystallinity modification in rice. PLoS One 2013, 8:e50171.
  • [44]Wang L, Xie W, Chen Y, Tang W, Yang J, Ye R, Liu L, Lin Y, Xu C, Xiao J, Zhang Q: A dynamic gene expression atlas covering the entire life cycle of rice. Plant J 2010, 61:752-766.
  • [45]Li Y, Qian Q, Zhou Y, Yan M, Sun L, Zhang M, Fu Z, Wang Y, Han B, Pang X, Chen M, Li J: Brittle culm1 which encodes a cobra-like protein affects the mechanical properties of rice plants. Plant Cell 2003, 15:2020-2031.
  • [46]Zhou Y, Li S, Qian Q, Zeng D, Zhang M, Guo L, Liu X, Zhang B, Deng L, Liu X, Luo G, Wang X, Li J: BC10 a DUF266-containing and Golgi-located type II membrane protein is required for cell-wall biosynthesis in rice (Oryza sativa L). Plant J 2009, 57:446-462.
  • [47]Zhang B, Zhou Y: Rice brittleness mutants: a way to open the 'black box’of monocot cell wall biosynthesis. J Integr Plant Biol 2011, 53:136-142.
  • [48]Miller JA, Cai C, Langfelder P, Geschwind DH, Kurian SM, Salomon DR, Horvath S: Strategies for aggregating gene expression data: the collapseRows R function. BMC Bioinformatics 2011, 12:322.
  • [49]R Development Core Team: R: A Language and Environment for Statistical Computing. version 2.13.1. Vienna Austria: R Foundation for Statistical Computing; 2012.
  • [50]Langfelder P, Horvath S: WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 2008, 9:559.
  • [51]Ravasz E, Somera AL, Mongru DA, Oltvai ZN, Barabasi AL: Hierarchical organization of modularity in metabolic networks. Science 2002, 297:1551-1555.
  • [52]Alexa A, Rahnenfuhrer J, Lengauer T: Improved scoring of functional groups from gene expression data by decorrelating GO graph structure. Bioinformatics 2006, 22:1600-1607.
  • [53]Kanehisa M, Goto S, Furumichi M, Tanabe M, Hirakawa M: KEGG for representation and analysis of molecular networks involving diseases and drugs. Nucleic Acids Res 2010, 38:D355-D360.
  • [54]Dong J, Horvath S: Understanding network concepts in modules. BMC Syst Biol 2007, 1:24.
  • [55]Langfelder P, Mischel PS, Horvath S: When is hub gene selection better than standard meta-analysis? PLoS One 2013, 8:e61505.
  • [56]Peng L, Hocart CH, Redmond JW, Williamson RE: Fractionation of carbohydrates in Arabidopsis root cell walls shows that three radial swelling loci are specifically involved in cellulose production. Planta 2000, 211:406-414.
  • [57]Xu N, Zhang W, Ren S, Liu F, Zhao C, Liao H, Xu Z, Huang J, Li Q, Tu Y, Yu B, Wang Y, Jiang J, Qin J, Peng L: Hemicelluloses negatively affect lignocellulose crystallinity for high biomass digestibility under NaOH and H2SO4 pretreatments in Miscanthus. Biotechnol Biofuels 2012, 5:58.
  • [58]Li F, Ren S, Zhang W, Xu Z, Xie G, Chen Y, Tu Y, Li Q, Zhou S, Li Y, Tu F, Liu L, Wang Y, Jiang J, Qin J, Li S, Li Q, Jing H, Zhou F, Gutterson N, Peng L: Arabinose substitution degree in xylan positively affects lignocellulose enzymatic digestibility after various NaOH/H2SO4 pretreatments in Miscanthus. Bioresour Technol 2013, 130:629-637.
  • [59]Usadel B, Obayashi T, Mutwil M, Giorgi FM, Bassel GW, Tanimoto M, Chow A, Steinhauser D, Persson S, Provart NJ: Co-expression tools for plant biology: opportunities for hypothesis generation and caveats. Plant Cell Environ 2009, 32:1633-1651.
  • [60]Yan C, Yan S, Zeng X, Zhang Z, Gu M: Fine mapping and isolation of bc7(t), allelic to OsCesA4. J Genet Genom 2007, 34:1019-1027.
  • [61]Zhang B, Deng L, Qian Q, Xiong G, Zeng D, Li R, Guo L, Li J, Zhou Y: A missense mutation in the transmembrane domain of CESA4 affects protein abundance in the plasma membrane and results in abnormal cell wall biosynthesis in rice. Plant Mol Biol 2009, 71:509-524.
  • [62]Hussey SG, Mizrachi E, Spokevicius AV, Bossinger G, Berger DK, Myburg AA: SND2, a NAC transcription factor gene, regulates genes involved in secondary cell wall development in Arabidopsis fibres and increases fibre cell area in Eucalyptus. BMC Plant Biol 2011, 11:173.
  • [63]Zhou J, Lee C, Zhong R, Ye Z: MYB58 and MYB63 are transcriptional activators of the lignin biosynthetic pathway during secondary cell wall formation in Arabidopsis. Plant Cell 2009, 21:248-266.
  • [64]Zhong R, Lee C, Ye Z: Global analysis of direct targets of secondary wall NAC master switches in Arabidopsis. Mol Plant 2010, 3:1087-1103.
  • [65]Hirano K, Kondo M, Aya K, Miyao A, Sato Y, Antonio BA, Namiki N, Nagamura Y, Matsuoka M: Identification of transcription factors involved in rice secondary cell wall formation. Plant Cell Physiol 2013, 54:1791-1802.
  • [66]Yoshida K, Sakamoto S, Kawai T, Kobayashi Y, Sato K, Ichinose Y, Yaoi K, Akiyoshi-Endo M, Sato H, Takamizo T, Ohme-Takagi M, Mitsuda N: Engineering the Oryza sativa cell wall with rice NAC transcription factors regulating secondary wall formation. Front Plant Sci 2013, 4:383.
  • [67]Lee C, Zhong R, Ye Z: Arabidopsis family GT43 members are xylan xylosyltransferases required for the elongation of the xylan backbone. Plant Cell Physiol 2012, 53:135-143.
  • [68]Brown DM, Wightman R, Zhang Z, Gomez LD, Atanassov I, Bukowski JP, Tryfona T, McQueen-Mason SJ, Dupree P, Turner SR: Arabidopsis genes IRREGULAR XYLEM (IRX15) and IRX15L encode DUF579-containing proteins that are essential for normal xylan deposition in the secondary cell wall. Plant J 2011, 66:401-413.
  • [69]Singh A, Singh U, Mittal D, Grover A: Transcript expression and regulatory characteristics of a rice glycosyltransferase OsGT61-1 gene. Plant Sci 2010, 179:114-122.
  • [70]Brown DM, Zhang Z, Stephens E, Dupree P, Turner SR: Characterization of IRX10 and IRX10-like reveals an essential role in glucuronoxylan biosynthesis in Arabidopsis. Plant J 2008, 57:732-746.
  • [71]Lee C, Teng Q, Huang W, Zhong R, Ye Z: The Arabidopsis family GT43 glycosyltransferases form two functionally nonredundant groups essential for the elongation of glucuronoxylan backbone. Plant Physiol 2010, 153:526-541.
  • [72]Jones L, Ennos AR, Turner SR: Cloning and characterization of irregular xylem4 (irx4): a severely lignin-deficient mutant of Arabidopsis. Plant J 2001, 26:205-216.
  • [73]Romano JM, Dubos C, Prouse MB, Wilkins O, Hong H, Poole M, Kang KY, Li E, Douglas CJ, Western TL, Mansfield SD, Campbell MM: AtMYB61 an R2R3-MYB transcription factor functions as a pleiotropic regulator via a small gene network. New Phytol 2012, 195:774-786.
  • [74]Yamaguchi M, Demura T: Transcriptional regulation of secondary wall formation controlled by NAC domain proteins. Plant Biotechnol 2010, 27:237-242.
  • [75]Yang SD, Seo PJ, Yoon HK, Park CM: The Arabidopsis NAC transcription factor VNI2 integrates abscisic acid signals into leaf senescence via the COR/RD genes. Plant Cell 2011, 23:2155-2168.
  • [76]Zhong R, Lee C, Zhou J, McCarthy RL, Ye Z: A battery of transcription factors involved in the regulation of secondary cell wall biosynthesis in Arabidopsis. Plant Cell 2008, 20:2763-2782.
  • [77]Thimm O, Blasing O, Gibon Y, Nagel A, Meyer S, Kruger P, Selbig J, Muller LA, Rhee SY, Stitt M: MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J 2004, 37:914-939.
  • [78]Yang C, Xu Z, Song J, Conner K, Barrena GV, Wilson ZA: Arabidopsis MYB26/MALE STERILE35 regulates secondary thickening in the endothecium and is essential for anther dehiscence. Plant Cell 2007, 19:534-548.
  • [79]Pimrote K, Tian Y, Lu X: Transcriptional regulatory network controlling secondary cell wall biosynthesis and biomass production in vascular plants. Afr J Biotechnol 2012, 11:13928-13937.
  • [80]Hotelling H: Relation between two sets of variates. Biometrika 1936, 28:321-377.
  • [81]Kent WJ: BLAT–the BLAST-like alignment tool. Genome Res 2002, 12:656-664.
  • [82]International Rice Genome Sequencing Project: The map-based sequence of the rice genome. Nature 2005, 436:793-800.
  • [83]Langfelder P, Horvath S: Eigengene networks for studying the relationships between co-expression modules. BMC Syst Biol 2007, 1:54.
  • [84]Barabasi AL, Albert R: Emergence of scaling in random networks. Science 1999, 286:509-512.
  • [85]Zhang B, Horvath S: A general framework for weighted gene co-expression network analysis. Stat Appl Genet Mol Biol 2005, 4:17.
  • [86]Du Z, Zhou X, Ling Y, Zhang Z, Su Z: agriGO: a GO analysis toolkit for the agricultural community. Nucleic Acids Res 2010, 38:W64-W70.
  • [87]Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP: Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 2005, 102:15545-15550.
  • [88]Tanaka T, Antonio BA, Kikuchi S, Matsumoto T, Nagamura Y, Numa H, Sakai H, Wu J, Itoh T, Sasaki T: The rice annotation project database (RAP-DB): 2008 update. Nucleic Acids Res 2008, 36:D1028.
  • [89]Rivals I, Personnaz L, Taing L, Potier MC: Enrichment or depletion of a GO category within a class of genes: which test? Bioinformatics 2007, 23:401-407.
  • [90]ter Braak CJF: Interpreting canonical correlation-analysis through biplots of structure correlations and weights. Psychometrika 1990, 55:519-531.
  • [91]González I, Lê Cao KA, Davis MD, Déjean S: Insightful graphical outputs to explore relationships between two 'omics’ data sets. BioData Mining 2013, 5:19.
  • [92]Lê Cao KA, González I, Déjean S: integrOmics: an R package to unravel relationships between two omics data sets. Bioinformatics 2009, 25:2855-2856.
  文献评价指标  
  下载次数:1次 浏览次数:2次