期刊论文详细信息
BMC Microbiology
Helicobacter pylori HP0377, a member of the Dsb family, is an untypical multifunctional CcmG that cooperates with dimeric thioldisulfide oxidase HP0231
E. Katarzyna Jagusztyn-Krynicka2  Elzbieta Nowak1  Piotr Wincek2  Paweł Urbanowicz2  Ewa Wywial3  Patrycja Kobierecka2  Magdalena Grzeszczuk2  Paula Roszczenko4 
[1] Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, Warsaw, Poland;Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland;Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, Warsaw, Poland;Present address: Department of Cell Biology, Nencki Institute of Experimental Biology, PAS, Warsaw, Poland
关键词: Isomerase activity;    Cytochrome c biogenesis;    Helicobacter pylori;    Dsb;   
Others  :  1227628
DOI  :  10.1186/s12866-015-0471-z
 received in 2015-02-16, accepted in 2015-06-23,  发布年份 2015
PDF
【 摘 要 】

Background

In the genome of H. pylori 26695, 149 proteins containing the CXXC motif characteristic of thioldisulfide oxidoreductases have been identified to date. However, only two of these proteins have a thioredoxin-like fold (i.e., HP0377 and HP0231) and are periplasm-located. We have previously shown that HP0231 is a dimeric oxidoreductase that catalyzes disulfide bond formation in the periplasm. Although HP0377 was originally described as DsbC homologue, its resolved structure and location of the hp0377 gene in the genome indicate that it is a counterpart of CcmG/DsbE.

Results

The present work shows that HP0377 is present in H. pylori cells only in a reduced form and that absence of the main periplasmic oxidase HP0231 influences its redox state. Our biochemical analysis indicates that HP0377 is a specific reductase, as it does not reduce insulin. However, it possesses disulfide isomerase activity, as it catalyzes the refolding of scrambled RNase. Additionally, although its standard redox potential is -176 mV, it is the first described CcmG protein having an acidic pKa of the N-terminal cysteine of the CXXC motif, similar to E. coli DsbA or E. coli DsbC. The CcmG proteins that play a role in a cytochrome c-maturation, both in system I and system II, are kept in the reduced form by an integral membrane protein DsbD or its analogue, CcdA. In H. pylori HP0377 is re-reduced by CcdA (HP0265); however in E. coli it remains in the oxidized state as it does not interact with E. coli DsbD. Our in vivo work also suggests that both HP0377, which plays a role in apocytochrome reduction, and HP0378, which is involved in heme transport and its ligation into apocytochrome, provide essential functions in H. pylori.

Conclusions

The present data, in combination with the resolved three-dimensional structure of the HP0377, suggest that HP0377 is an unusual, multifunctional CcmG protein.

【 授权许可】

   
2015 Roszczenko et al.

【 预 览 】
附件列表
Files Size Format View
20150929023210570.pdf 2541KB PDF download
Fig. 11. 84KB Image download
Fig. 10. 7KB Image download
Fig. 9. 8KB Image download
Fig. 8. 14KB Image download
Fig. 7. 9KB Image download
Fig. 6. 29KB Image download
Fig. 5. 30KB Image download
Fig. 4. 13KB Image download
Fig. 3. 17KB Image download
Fig. 2. 24KB Image download
Fig. 1. 11KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.

Fig. 8.

Fig. 9.

Fig. 10.

Fig. 11.

【 参考文献 】
  • [1]Denoncin K, Collet JF. Disulfide bond formation in the bacterial periplasm: major achievements and challenges ahead. Antioxid Redox Signal. 2013; 19(1):63-71.
  • [2]Bonnard G, Corvest V, Meyer EH, Hamel PP. Redox processes controlling the biogenesis of c-type cytochromes. Antioxid Redox Signal. 2010; 13(9):1385-401.
  • [3]Kranz RG, Richard-Fogal C, Taylor JS, Frawley ER. Cytochrome c biogenesis: mechanisms for covalent modifications and trafficking of heme and for heme-iron redox control. Microbiol Mol Biol Rev. 2009; 73(3):510-28.
  • [4]Sanders C, Turkarslan S, Lee DW, Daldal F. Cytochrome c biogenesis: the Ccm system. Trends Microbiol. 2010; 18(6):266-74.
  • [5]Mavridou DA, Clark MN, Choulat C, Ferguson SJ, Stevens JM. Probing heme delivery processes in cytochrome c biogenesis system I. Biochemistry. 2013; 52(41):7262-70.
  • [6]Ferguson SJ, Stevens JM, Allen JW, Robertson IB. Cytochrome c assembly: a tale of ever increasing variation and mystery? Biochim Biophys Acta. 2008; 1777(7-8):980-4.
  • [7]Simon J, Hederstedt L. Composition and function of cytochrome c biogenesis System II. FEBS J. 2011; 278(22):4179-88.
  • [8]Ahuja U, Kjelgaard P, Schulz BL, Thony-Meyer L, Hederstedt L. Haem-delivery proteins in cytochrome c maturation System II. Mol Microbiol. 2009; 73(6):1058-71.
  • [9]Metheringham R, Tyson KL, Crooke H, Missiakas D, Raina S, Cole JA. Effects of mutations in genes for proteins involved in disulphide bond formation in the periplasm on the activities of anaerobically induced electron transfer chains in Escherichia coli K12. Mol Gen Genet. 1996; 253(1-2):95-102.
  • [10]Sambongi Y, Ferguson SJ. Mutants of Escherichia coli lacking disulphide oxidoreductases DsbA and DsbB cannot synthesise an exogenous monohaem c-type cytochrome except in the presence of disulphide compounds. FEBS Lett. 1996; 398(2-3):265-8.
  • [11]Deshmukh M, Turkarslan S, Astor D, Valkova-Valchanova M, Daldal F. The dithiol:disulfide oxidoreductases DsbA and DsbB of Rhodobacter capsulatus are not directly involved in cytochrome c biogenesis, but their inactivation restores the cytochrome c biogenesis defect of CcdA-null mutants. J Bacteriol. 2003; 185(11):3361-72.
  • [12]Erlendsson LS, Hederstedt L. Mutations in the thiol-disulfide oxidoreductases BdbC and BdbD can suppress cytochrome c deficiency of CcdA-defective Bacillus subtilis cells. J Bacteriol. 2002; 184(5):1423-9.
  • [13]Turkarslan S, Sanders C, Ekici S, Daldal F. Compensatory thio-redox interactions between DsbA, CcdA and CcmG unveil the apocytochrome c holdase role of CcmG during cytochrome c maturation. Mol Microbiol. 2008; 70(3):652-66.
  • [14]Feissner RE, Richard-Fogal CL, Frawley ER, Loughman JA, Earley KW, Kranz RG. Recombinant cytochromes c biogenesis systems I and II and analysis of haem delivery pathways in Escherichia coli. Mol Microbiol. 2006; 60(3):563-77.
  • [15]Goddard AD, Stevens JM, Rondelet A, Nomerotskaia E, Allen JW, Ferguson SJ. Comparing the substrate specificities of cytochrome c biogenesis Systems I and II: bioenergetics. FEBS J. 2010; 277(3):726-37.
  • [16]Mavridou DA, Ferguson SJ, Stevens JM. The interplay between the disulfide bond formation pathway and cytochrome c maturation in Escherichia coli. FEBS Lett. 2012; 586(12):1702-7.
  • [17]Koyanagi S, Nagata K, Tamura T, Tsukita S, Sone N. Purification and characterization of cytochrome c-553 from Helicobacter pylori. J Biochem. 2000; 128(3):371-5.
  • [18]Kelly DJ, Hughes NJ, Poole RK. Microaerobic physiology: aerobic respiration, anaerobic respiration, and carbon dioxide metabolism. 2001. NBK2411 [bookaccession].
  • [19]Kaakoush NO, Kovach Z, Mendz GL. Potential role of thiol:disulfide oxidoreductases in the pathogenesis of Helicobacter pylori. FEMS Immunol Med Microbiol. 2007; 50(2):177-83.
  • [20]Sharma CM, Hoffmann S, Darfeuille F, Reignier J, Findeiss S, Sittka A et al.. The primary transcriptome of the major human pathogen Helicobacter pylori. Nature. 2010; 464(7286):250-5.
  • [21]Frawley ER, Kranz RG. CcsBA is a cytochrome c synthetase that also functions in heme transport. Proc Natl Acad Sci U S A. 2009; 106(25):10201-6.
  • [22]Yoon JY, Kim J, An DR, Lee SJ, Kim HS, Im HN et al.. Structural and functional characterization of HP0377, a thioredoxin-fold protein from Helicobacter pylori. Acta Crystallogr D Biol Crystallogr. 2013; 69(Pt 5):735-46.
  • [23]Tomb JF, White O, Kerlavage AR, Clayton RA, Sutton GG, Fleischmann RD et al.. The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature. 1997; 388(6642):539-47.
  • [24]Ferrero RL, Cussac V, Courcoux P, Labigne A. Construction of isogenic urease-negative mutants of Helicobacter pylori by allelic exchange. J Bacteriol. 1992; 174(13):4212-7.
  • [25]Hiniker A, Collet JF, Bardwell JC. Copper stress causes an in vivo requirement for the Escherichia coli disulfide isomerase DsbC. J Biol Chem. 2005; 280(40):33785-91.
  • [26]Sambrook J, Russell DW. Molecular Cloning : A Laboratory Manual. 3rd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y; 2001.
  • [27]Zeng X, He LH, Yin Y, Zhang MJ, Zhang JZ. Deletion of cagA gene of Helicobacter pylori by PCR products. World J Gastroenterol. 2005; 11(21):3255-9.
  • [28]Chalker AF, Minehart HW, Hughes NJ, Koretke KK, Lonetto MA, Brinkman KK et al.. Systematic identification of selective essential genes in Helicobacter pylori by genome prioritization and allelic replacement mutagenesis. J Bacteriol. 2001; 183(4):1259-68.
  • [29]Myers JD, Kelly DJ. A sulphite respiration system in the chemoheterotrophic human pathogen Campylobacter jejuni. Microbiology. 2005; 151(Pt 1):233-42.
  • [30]Baik SC, Kim KM, Song SM, Kim DS, Jun JS, Lee SG et al.. Proteomic analysis of the sarcosine-insoluble outer membrane fraction of Helicobacter pylori strain 26695. J Bacteriol. 2004; 186(4):949-55.
  • [31]Roszczenko P, Radomska KA, Wywial E, Collet JF, Jagusztyn-Krynicka EK. A novel insight into the oxidoreductase activity of Helicobacter pylori HP0231 protein. PLoS One. 2012; 7(10):e46563.
  • [32]Studier FW. Protein production by auto-induction in high density shaking cultures. Protein Expr Purif. 2005; 41(1):207-34.
  • [33]Denoncin K, Nicolaes V, Cho SH, Leverrier P, Collet JF. Protein disulfide bond formation in the periplasm: determination of the in vivo redox state of cysteine residues. Methods Mol Biol. 2013; 966:325-36.
  • [34]Kadokura H, Tian H, Zander T, Bardwell JC, Beckwith J. Snapshots of DsbA in action: detection of proteins in the process of oxidative folding. Science. 2004; 303(5657):534-7.
  • [35]Nelson JW, Creighton TE. Reactivity and ionization of the active site cysteine residues of DsbA, a protein required for disulfide bond formation in vivo. Biochemistry. 1994; 33(19):5974-83.
  • [36]Wunderlich M, Glockshuber R. Redox properties of protein disulfide isomerase (DsbA) from Escherichia coli. Protein Sci. 1993; 2(5):717-26.
  • [37]Sabarth N, Lamer S, Zimny-Arndt U, Jungblut PR, Meyer TF, Bumann D. Identification of surface proteins of Helicobacter pylori by selective biotinylation, affinity purification, and two-dimensional gel electrophoresis. J Biol Chem. 2002; 277(31):27896-902.
  • [38]Lafaye C, Iwema T, Carpentier P, Jullian-Binard C, Kroll JS, Collet JF et al.. Biochemical and structural study of the homologues of the thiol-disulfide oxidoreductase DsbA in Neisseria meningitidis. J Mol Biol. 2009; 392(4):952-66.
  • [39]Messens J, Collet JF, Van Belle K, Brosens E, Loris R, Wyns L. The oxidase DsbA folds a protein with a nonconsecutive disulfide. J Biol Chem. 2007; 282(43):31302-7.
  • [40]Sardesai AA, Genevaux P, Schwager F, Ang D, Georgopoulos C. The OmpL porin does not modulate redox potential in the periplasmic space of Escherichia coli. EMBO J. 2003; 22(7):1461-6.
  • [41]Chim N, Harmston CA, Guzman DJ, Goulding CW. Structural and biochemical characterization of the essential DsbA-like disulfide bond forming protein from Mycobacterium tuberculosis. BMC Struct Biol. 2013; 13:23. BioMed Central Full Text
  • [42]Daniels R, Mellroth P, Bernsel A, Neiers F, Normark S, von Heijne G et al.. Disulfide bond formation and cysteine exclusion in gram-positive bacteria. J Biol Chem. 2010; 285(5):3300-9.
  • [43]Olejnik K, Kraszewska E. Cloning and characterization of an Arabidopsis thaliana Nudix hydrolase homologous to the mammalian GFG protein. Biochim Biophys Acta. 2005; 1752(2):133-41.
  • [44]Edeling MA, Ahuja U, Heras B, Thony-Meyer L, Martin JL. The acidic nature of the CcmG redox-active center is important for cytochrome c maturation in Escherichia coli. J Bacteriol. 2004; 186(12):4030-3.
  • [45]Lewin A, Crow A, Hodson CT, Hederstedt L, Le Brun NE. Effects of substitutions in the CXXC active-site motif of the extracytoplasmic thioredoxin ResA. Biochem J. 2008; 414(1):81-91.
  • [46]Sun XX, Wang CC. The N-terminal sequence (residues 1-65) is essential for dimerization, activities, and peptide binding of Escherichia coli DsbC. J Biol Chem. 2000; 275(30):22743-9.
  • [47]Boneca IG, Ecobichon C, Chaput C, Mathieu A, Guadagnini S, Prevost MC et al.. Development of inducible systems to engineer conditional mutants of essential genes of Helicobacter pylori. Appl Environ Microbiol. 2008; 74(7):2095-102.
  • [48]Katzen F, Deshmukh M, Daldal F, Beckwith J. Evolutionary domain fusion expanded the substrate specificity of the transmembrane electron transporter DsbD. EMBO J. 2002; 21(15):3960-9.
  • [49]Kostrzynska M, O’Toole PW, Taylor DE, Trust TJ. Molecular characterization of a conserved 20-kilodalton membrane-associated lipoprotein antigen of Helicobacter pylori. J Bacteriol. 1994; 176(19):5938-48.
  • [50]O’Toole PW, Janzon L, Doig P, Huang J, Kostrzynska M, Trust TJ. The putative neuraminyllactose-binding hemagglutinin HpaA of Helicobacter pylori CCUG 17874 is a lipoprotein. J Bacteriol. 1995; 177(21):6049-57.
  • [51]Ouyang N, Gao YG, Hu HY, Xia ZX. Crystal structures of E. coli CcmG and its mutants reveal key roles of the N-terminal beta-sheet and the fingerprint region. Proteins. 2006; 65(4):1021-31.
  • [52]Di Matteo A, Calosci N, Gianni S, Jemth P, Brunori M, Travaglini-Allocatelli C. Structural and functional characterization of CcmG from Pseudomonas aeruginosa, a key component of the bacterial cytochrome c maturation apparatus. Proteins. 2010; 78(10):2213-21.
  • [53]Fabianek RA, Huber-Wunderlich M, Glockshuber R, Kunzler P, Hennecke H, Thony-Meyer L. Characterization of the Bradyrhizobium japonicum CycY protein, a membrane-anchored periplasmic thioredoxin that may play a role as a reductant in the biogenesis of c-type cytochromes. J Biol Chem. 1997; 272(7):4467-73.
  • [54]Mohorko E, Abicht HK, Buhler D, Glockshuber R, Hennecke H, Fischer HM. Thioredoxin-like protein TlpA from Bradyrhizobium japonicum is a reductant for the copper metallochaperone ScoI. FEBS Lett. 2012; 586(23):4094-9.
  • [55]Edeling MA, Guddat LW, Fabianek RA, Thony-Meyer L, Martin JL. Structure of CcmG/DsbE at 1.14 A resolution: high-fidelity reducing activity in an indiscriminately oxidizing environment. Structure. 2002; 10(7):973-9.
  • [56]Capitani G, Rossmann R, Sargent DF, Grutter MG, Richmond TJ, Hennecke H. Structure of the soluble domain of a membrane-anchored thioredoxin-like protein from Bradyrhizobium japonicum reveals unusual properties. J Mol Biol. 2001; 311(5):1037-48.
  • [57]Colbert CL, Wu Q, Erbel PJ, Gardner KH, Deisenhofer J. Mechanism of substrate specificity in Bacillus subtilis ResA, a thioredoxin-like protein involved in cytochrome c maturation. Proc Natl Acad Sci U S A. 2006; 103(12):4410-5.
  • [58]Le Brun NE, Bengtsson J, Hederstedt L. Genes required for cytochrome c synthesis in Bacillus subtilis. Mol Microbiol. 2000; 36(3):638-50.
  • [59]Paetzel M, Karla A, Strynadka NC, Dalbey RE. Signal peptidases. Chem Rev. 2002; 102(12):4549-80.
  • [60]Liechti G, Goldberg JB. Outer membrane biogenesis in Escherichia coli, Neisseria meningitidis, and Helicobacter pylori: paradigm deviations in H. pylori. Front Cell Infect Microbiol. 2012; 2:29.
  • [61]Yerushalmi G, Zusman T, Segal G. Additive effect on intracellular growth by Legionella pneumophila Icm/Dot proteins containing a lipobox motif. Infect Immun. 2005; 73(11):7578-87.
  • [62]Stirnimann CU, Grutter MG, Glockshuber R, Capitani G. nDsbD: a redox interaction hub in the Escherichia coli periplasm. Cell Mol Life Sci. 2006; 63(14):1642-8.
  • [63]Rozhkova A, Glockshuber R. Thermodynamic aspects of DsbD-mediated electron transport. J Mol Biol. 2008; 380(5):783-8.
  • [64]Cho SH, Collet JF. Many roles of the bacterial envelope reducing pathways. Antioxid Redox Signal. 2013; 18(13):1690-8.
  • [65]Han H, Wilson AC. The two CcdA proteins of Bacillus anthracis differentially affect virulence gene expression and sporulation. J Bacteriol. 2013; 195(23):5242-9.
  • [66]Erlendsson LS, Moller M, Hederstedt L. Bacillus subtilis StoA Is a thiol-disulfide oxidoreductase important for spore cortex synthesis. J Bacteriol. 2004; 186(18):6230-8.
  • [67]Cho SH, Parsonage D, Thurston C, Dutton RJ, Poole LB, Collet JF et al. A new family of membrane electron transporters and its substrates, including a new cell envelope peroxiredoxin, reveal a broadened reductive capacity of the oxidative bacterial cell envelope. MBio. 2012;3(2). doi:10.1128/mBio.00291-11
  • [68]Cho SH, Beckwith J. Two snapshots of electron transport across the membrane: insights into the structure and function of DsbD. J Biol Chem. 2009; 284(17):11416-24.
  • [69]Cho SH, Porat A, Ye J, Beckwith J. Redox-active cysteines of a membrane electron transporter DsbD show dual compartment accessibility. EMBO J. 2007; 26(15):3509-20.
  • [70]Kpadeh ZZ, Jameson-Lee M, Yeh AJ, Chertihin O, Shumilin IA, Dey R et al.. Disulfide bond oxidoreductase DsbA2 of Legionella pneumophila exhibits protein disulfide isomerase activity. J Bacteriol. 2013; 195(8):1825-33.
  • [71]Kpadeh ZZ, Day SR, Mills BW, Hoffman PS. Legionella pneumophila utilizes a single-player disulfide-bond oxidoreductase system to manage disulfide bond formation and isomerization. Mol Microbiol. 2015; 95(6):1054-69.
  • [72]Bardwell JC, McGovern K, Beckwith J. Identification of a protein required for disulfide bond formation in vivo. Cell. 1991; 67(3):581-9.
  • [73]Katzen F, Beckwith J. Transmembrane electron transfer by the membrane protein DsbD occurs via a disulfide bond cascade. Cell. 2000; 103(5):769-79.
  • [74]Heuermann D, Haas R. A stable shuttle vector system for efficient genetic complementation of Helicobacter pylori strains by transformation and conjugation. Mol Gen Genet. 1998; 257(5):519-28.
  • [75]Mayer MP. A new set of useful cloning and expression vectors derived from pBlueScript. Gene. 1995; 163(1):41-6.
  • [76]Yao R, Burr DH, Doig P, Trust TJ, Niu H, Guerry P. Isolation of motile and non-motile insertional mutants of Campylobacter jejuni: the role of motility in adherence and invasion of eukaryotic cells. Mol Microbiol. 1994; 14(5):883-93.
  • [77]Taylor DE. Genetic-Analysis of Campylobacter-Spp. Camplylobacter Jejuni. 1992:255-66.
  • [78]Raczko AM, Bujnicki JM, Pawlowski M, Godlewska R, Lewandowska M, Jagusztyn-Krynicka EK. Characterization of new DsbB-like thiol-oxidoreductases of Campylobacter jejuni and Helicobacter pylori and classification of the DsbB family based on phylogenomic, structural and functional criteria. Microbiology. 2005; 151(Pt 1):219-31.
  文献评价指标  
  下载次数:109次 浏览次数:10次