期刊论文详细信息
BMC Microbiology
High-throughput sequencing for the detection of the bacterial and fungal diversity in Mongolian naturally fermented cow’s milk in Russia
Heping Zhang1  Bilige Menhe2  Qiangchuan Hou2  Zhuang Guo2  Jiachao Zhang2  Zhihong Sun1  Lai-Yu Kwok2  Yi Zheng2  Wenjun Liu1 
[1] Synergetic Innovation Center of Food Safety and Nutrition, Northeast Agricultural University, Harbin 150030, P. R. China;Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, P. R. China
关键词: Mongolia;    Chita;    Kalmykia;    Russia;    Naturally fermented cow’s milk;    Pyrosequencing;   
Others  :  1137363
DOI  :  10.1186/s12866-015-0385-9
 received in 2015-01-25, accepted in 2015-02-12,  发布年份 2015
PDF
【 摘 要 】

Background

Traditional fermented dairy products are major components of the typical Mongolian diet since ancient times. However, almost all the previous studies on the microbial composition of traditional Mongolian fermented dairy products analyzed food samples from the Chinese Mongolian region and Mongolia but not the Russian Mongolian region. In this study, the bacterial and fungal community diversity of nineteen naturally fermented cow’s milk (NFCM) samples from local Mongolian families residing in Kalmykia and Chita of Russia was investigated with pyrosequencing.

Results

Firmicutes and Ascomycota were the predominant phyla respectively for bacteria and fungi. The abundance of the bacterial phylum Acidobacteria was considerably different between the samples from the two regions. At genus level, Lactobacillus and Pichia were the predominating bacterial and fungal genera, respectively, while six bacterial genera significantly differed between the Kalmykia (enrichment of Aeromonas, Bacillus, Clostridium, Streptococcus, Vogesella) and Chita (enrichment of Lactococcus) samples. The results of principal coordinate analysis (PCoA) based on the bacterial or fungal composition of the Kalmykia and Chita samples revealed a different microbiota structure between the samples collected in these two locations. The redundancy analysis (RDA) identified 60 bacterial and 21 fungal OTUs as the key variables responsible for such microbiota structural difference.

Conclusions

Our results suggest that structural differences existed in the microbiota of NFCM between Kalmykia and Chita. The difference in geographic environment may be an important factor influencing the microbial diversity of NFCM made by the Mongolians in Russia.

【 授权许可】

   
2015 Liu et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150317021330848.pdf 1645KB PDF download
Figure 4. 30KB Image download
Figure 3. 43KB Image download
Figure 2. 62KB Image download
Figure 1. 77KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Watanabe K, Fujimoto J, Sasamoto M, Dugersuren J, Tumursuh T, Demberel S: Diversity of lactic acid bacteria and yeasts in Airag and Tarag, traditional fermented milk products of Mongolia. World J Microbiol Biotechnol 2008, 24(8):1313-25.
  • [2]Rodrigues KL, Caputo LRG, Carvalho JCT, Evangelista J, Schneedorf JM: Antimicrobial and healing activity of kefir and kefiran extract. Int J Antimicrob Agents 2005, 25(5):404-8.
  • [3]Golowczyc MA, Gugliada MJ, Hollmann A, Delfederico L, Garrote GL, Abraham AG, et al.: Characterization of homofermentative lactobacilli isolated from kefir grains: potential use as probiotic. J Dairy Res 2008, 75(2):211-7.
  • [4]Casalta E, Sorba J-M, Aigle M, Ogier J-C: Diversity and dynamics of the microbial community during the manufacture of Calenzana, an artisanal Corsican cheese. Int J Food Microbiol 2009, 133(3):243-51.
  • [5]Delbès C, Ali-Mandjee L, Montel M-C: Monitoring bacterial communities in raw milk and cheese by culture-dependent and-independent 16S rRNA gene-based analyses. Appl Environ Microbiol 2007, 73(6):1882-91.
  • [6]Dobson A, O'Sullivan O, Cotter PD, Ross P, Hill C: High-throughput sequence-based analysis of the bacterial composition of kefir and an associated kefir grain. Fems Microbiol Lett 2011, 320(1):56-62.
  • [7]Van Hoorde K, Verstraete T, Vandamme P, Huys G: Diversity of lactic acid bacteria in two Flemish artisan raw milk Gouda-type cheeses. Food Microbiol 2008, 25(7):929-35.
  • [8]Liu W, Bao Q, Qing M, Chen X, Sun T, Li M, et al.: Isolation and identification of lactic acid bacteria from Tarag in Eastern Inner Mongolia of China by 16S rRNA sequences and DGGE analysis. Microbiol Res 2012, 167(2):110-5.
  • [9]Liu W, Sun Z, Zhang Y, Zhang C, Yang M, Sun T, et al.: A survey of the bacterial composition of kurut from Tibet using a culture-independent approach. J Dairy Sci 2012, 95(3):1064-72.
  • [10]Chen H-C, Wang S-Y, Chen M-J: Microbiological study of lactic acid bacteria in kefir grains by culture-dependent and culture-independent methods. Food Microbiol 2008, 25(3):492-501.
  • [11]Alegría Á, Szczesny P, Mayo B, Bardowski J, Kowalczyk M: Biodiversity in Oscypek, a traditional Polish cheese, determined by culture-dependent and-independent approaches. Appl Environ Microbiol 2012, 78(6):1890-8.
  • [12]Abriouel H, Martín-Platero A, Maqueda M, Valdivia E, Martínez-Bueno M: Biodiversity of the microbial community in a Spanish farmhouse cheese as revealed by culture-dependent and culture-independent methods. Int J Food Microbiol 2008, 127(3):200-8.
  • [13]Friedrich U, Lenke J: Improved enumeration of lactic acid bacteria in mesophilic dairy starter cultures by using multiplex quantitative real-time PCR and flow cytometry-fluorescence in situ hybridization. Appl Environ Microbiol 2006, 72(6):4163-71.
  • [14]Jany J-L, Barbier G: Culture-independent methods for identifying microbial communities in cheese. Food Microbiol 2008, 25(7):839-48.
  • [15]Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, et al.: Genome sequencing in microfabricated high-density picolitre reactors. Nature 2005, 437(7057):376-80.
  • [16]Masoud W, Takamiya M, Vogensen FK, Lillevang S, Al-Soud WA, Sørensen SJ, et al.: Characterization of bacterial populations in Danish raw milk cheeses made with different starter cultures by denaturating gradient gel electrophoresis and pyrosequencing. Int Dairy J 2011, 21(3):142-8.
  • [17]Quigley L, O'Sullivan O, Beresford TP, Ross RP, Fitzgerald GF, Cotter PD: High-throughput sequencing for detection of subpopulations of bacteria not previously associated with artisanal cheeses. Appl Environ Microbiol 2012, 78(16):5717-23.
  • [18]Leite A, Mayo B, Rachid C, Peixoto R, Silva J, Paschoalin V, et al.: Assessment of the microbial diversity of Brazilian kefir grains by PCR-DGGE and pyrosequencing analysis. Food Microbiol 2012, 31(2):215-21.
  • [19]Roh SW, Kim K-H, Nam Y-D, Chang H-W, Park E-J, Bae J-W: Investigation of archaeal and bacterial diversity in fermented seafood using barcoded pyrosequencing. ISME J 2010, 4(1):1-16.
  • [20]Nam YD, Park SL, Lim SI: Microbial composition of the Korean traditional food “kochujang” analyzed by a massive sequencing technique. J Food Sci 2012, 77(4):M250-6.
  • [21]An Y, Adachi Y, Ogawa Y: Classification of lactic acid bacteria isolated from chigee and mare milk collected in Inner Mongolia. Anim Sci J 2004, 75(3):245-52.
  • [22]Uchida K, Hirata M, Motoshima H, Urashima T, Arai I: Microbiota of ‘airag’, ‘tarag’and other kinds of fermented dairy products from nomad in Mongolia. Anim Sci J 2007, 78(6):650-8.
  • [23]Humblot C, Guyot J-P: Pyrosequencing of tagged 16S rRNA gene amplicons for rapid deciphering of the microbiomes of fermented foods such as pearl millet slurries. Appl Environ Microbiol 2009, 75(13):4354-61.
  • [24]Jung M-J, Nam Y-D, Roh SW, Bae J-W: Unexpected convergence of fungal and bacterial communities during fermentation of traditional Korean alcoholic beverages inoculated with various natural starters. Food Microbiol 2012, 30(1):112-23.
  • [25]Li X-R, Ma E-B, Yan L-Z, Meng H, Du X-W, Zhang S-W, et al.: Bacterial and fungal diversity in the traditional Chinese liquor fermentation process. Int J Food Microbiol 2011, 146(1):31-7.
  • [26]Bao Q, Yu J, Liu W, Qing M, Wang W, Chen X, et al.: Predominant lactic acid bacteria in traditional fermented yak milk products in the Sichuan Province of China. Dairy Sci Technol 2012, 92(3):309-19.
  • [27]Rogosa M, Mitchell JA, Wiseman RF: A selective medium for the isolation and enumeration of oral and fecal lactobacilli. J Bacteriol 1951, 62(1):132.
  • [28]Felis GE, Dellaglio F, Mizzi L, Torriani S: Comparative sequence analysis of a recA gene fragment brings new evidence for a change in the taxonomy of the Lactobacillus casei group. Int J Syst Evol Microbiol 2001, 51(6):2113-7.
  • [29]Torriani S, Felis GE, Dellaglio F: Differentiation of Lactobacillus plantarum, L. pentosus, and L. paraplantarum by recA gene sequence analysis and multiplex PCR assay with recA gene-derived primers. Appl Environ Microbiol 2001, 67(8):3450-4.
  • [30]Bringel F, Castioni A, Olukoya DK, Felis GE, Torriani S, Dellaglio F: Lactobacillus plantarum subsp. argentoratensis subsp. nov., isolated from vegetable matrices. Int J Syst Evol Microbiol 2005, 55(4):1629-34.
  • [31]Escalante A, Giles-Gómez M, Hernández G, Córdova-Aguilar MS, López-Munguía A, Gosset G, et al.: Analysis of bacterial community during the fermentation of pulque, a traditional Mexican alcoholic beverage, using a polyphasic approach. Int J Food Microbiol 2008, 124(2):126-34.
  • [32]Miyamoto M, Seto Y, Nakajima H, Burenjargal S, Gombojav A, Demberel S, et al.: Denaturing gradient gel electrophoresis analysis of lactic acid bacteria and yeasts in traditional Mongolian fermented milk. Food Sci Technol Res 2010, 16(4):319-26.
  • [33]Rahman N, Xiaohong C, Meiqin F, Mingsheng D: Characterization of the dominant microflora in naturally fermented camel milk shubat. World J Microbiol Biotechnol 2009, 25(11):1941-6.
  • [34]Arakawa K, Miyamoto M, Miyamoto T: Interaction between lactic acid bacteria and yeasts in airag, an alcoholic fermented milk. Anim Sci J 2013, 84(1):66-74.
  • [35]Wyder M-T, Bachmann H-P, Puhan Z: Role of selected yeasts in cheese ripening: an evaluation in foil wrapped Raclette cheese. LWT-Food Sci Technol 1999, 32(6):333-43.
  • [36]Feurer C, Vallaeys T, Corrieu G, Irlinger F: Does smearing inoculum reflect the bacterial composition of the smear at the end of the ripening of a French soft, red-smear cheese? J Dairy Sci 2004, 87(10):3189-97.
  • [37]Baldorj R, Tumenjargal D, Batjargal B: Biochemical and Microbiological Study of Fermented Mare’s Milk (Airag) Prepared by TRADITIONAL MONGOLIAN TECHNOLOGY. In Proceedings of International Scientific Symposium on Nomadic Cultural Tradition: Mongolian Dairy Products. The International Institute for the Study of Nomadic Civilization, Ulaanbaatar; 2003:70-6. ISBN:99929-5-789-1
  • [38]Ding L, Long R, Shang Z, Wang C, Yang Y, Xu S: Feeding behaviour of yaks on spring, transitional, summer and winter pasture in the alpine region of the Qinghai–Tibetan plateau. Appl Anim Behav Sci 2008, 111(3):373-90.
  • [39]Wu X-H, Luo Z, Yu L, Ren F-Z, Han B-Z, Nout MR: A survey on composition and microbiota of fresh and fermented yak milk at different Tibetan altitudes. Dairy Sci Technol 2009, 89(2):201-9.
  • [40]Hu S, Wei H, Guo S, Li L, Hou Y: Flavor evaluation of yak butter in Tsinghai‐Tibet Plateau and isolation of microorganisms contributing flavor. Anim Sci J 2011, 82(1):122-6.
  • [41]Britannica E: Encyclopædia britannica. Common Law, Chicago; 2009.
  • [42]Huse SM, Dethlefsen L, Huber JA, Welch DM, Relman DA, Sogin ML: Exploring microbial diversity and taxonomy using SSU rRNA hypervariable tag sequencing. PLoS Genet 2008, 4(11):e1000255.
  • [43]Bråte J, Logares R, Berney C, Ree DK, Klaveness D, Jakobsen KS, et al.: Freshwater Perkinsea and marine-freshwater colonizations revealed by pyrosequencing and phylogeny of environmental rDNA. ISME J 2010, 4(9):1144-53.
  • [44]Zhang J, Wang L, Guo Z, Sun Z, Gesudu Q, Kwok L, et al.: 454 pyrosequencing reveals changes in the faecal microbiota of adults consuming Lactobacillus casei Zhang. FEMS Microbiol Ecol 2014, 88(3):612-22.
  • [45]Zhang J, Guo Z, Lim AAQ, Zheng Y, Koh EY, Ho D, et al.: Mongolians core gut microbiota and its correlation with seasonal dietary changes. Sci Rep 2014, 16(4):5001.
  • [46]Caporaso JG, Bittinger K, Bushman FD, DeSantis TZ, Andersen GL, Knight R: PyNAST: a flexible tool for aligning sequences to a template alignment. Bioinformatics 2010, 26(2):266-7.
  • [47]Edgar RC: Search and clustering orders of magnitude faster than BLAST. Bioinformatics 2010, 26(19):2460-1.
  • [48]Haas BJ, Gevers D, Earl AM, Feldgarden M, Ward DV, Giannoukos G, et al.: Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. Genome Res 2011, 21(3):494-504.
  • [49]Cole JR, Chai B, Farris RJ, Wang Q, Kulam-Syed-Mohideen A, McGarrell D, et al.: The ribosomal database project (RDP-II): introducing myRDP space and quality controlled public data. Nucleic Acids Res 2007, 35(suppl 1):D169-72.
  • [50]Price MN, Dehal PS, Arkin AP: FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol Biol Evol 2009, 26(7):1641-50.
  • [51]Lozupone C, Knight R: UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol 2005, 71(12):8228-35.
  • [52]Felis GE, Dellaglio F: Taxonomy of lactobacilli and bifidobacteria. Curr Issues Intest Microbiol 2007, 8(2):44.
  • [53]Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S: MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011, 28(10):2731-9.
  文献评价指标  
  下载次数:62次 浏览次数:31次