期刊论文详细信息
BMC Medical Genetics
NPAS3 variants in schizophrenia: a neuroimaging study
Philip G Tibbo1  Benjamin Rusak2  Katherine J Aitchison4  Scot Purdon5  Diane Cox7  David McAllindon1  Christopher C Hanstock3  Robert Bartha6  Georgina Macintyre7  Denise Bernier1 
[1] Department of Psychiatry, Dalhousie University, Halifax, Canada;Departments of Psychiatry, Psychology and Pharmacology, Dalhousie University, Halifax, Canada;Department of Biomedical Engineering, University of Alberta, Edmonton, Canada;Departments of Psychiatry and Medical Genetics, University of Alberta, Edmonton, Canada;Department of Psychiatry, University of Alberta, Edmonton, Canada;Department of Diagnostic Radiology and Nuclear Medicine, Robarts Research Institute, University of Western Ontario, London, Canada;Department of Medical Genetics, University of Alberta, Edmonton, Canada
关键词: Genetics;    Psychosis;    Temporal lobe;    Hippocampus;    N-acetylaspartate;    1H-MRS;    Relaxation time constants;   
Others  :  1092200
DOI  :  10.1186/1471-2350-15-37
 received in 2014-03-08, accepted in 2014-03-21,  发布年份 2014
PDF
【 摘 要 】

Background

This research is a one-site neuroimaging component of a two-site genetic study involving patients with schizophrenia at early and later stages of illness. Studies support a role for the neuronal Per-Arnt-Sim 3 (NPAS3) gene in processes that are essential for normal brain development. Specific NPAS3 variants have been observed at an increased frequency in schizophrenia. In humans, NPAS3 protein was detected in the hippocampus from the first trimester of gestation. In addition, NPAS3 protein levels were reduced in the dorsolateral prefrontal cortex of some patients with schizophrenia. Npas3 knockout mice display behavioural, neuroanatomical and structural changes with associated severe reductions in neural precursor cell proliferation in the hippocampal dentate gyrus. This study will evaluate the hypothesis that the severe reductions in neural precursor cell proliferation in the dentate gyrus will be present to some degree in patients carrying schizophrenia-associated NPAS3 variants and less so in other patients.

Methods/Design

Patients enrolled in the larger genetic study (n = 150) will be invited to participate in this neuroimaging arm. The genetic data will be used to ensure a sample size of 45 participants in each genetic subgroup of patients (with and without NPAS3 variants). In addition, we will recruit 60 healthy controls for acquisition of normative data. The following neuroimaging measures will be acquired from the medial temporal region: a) an index of the microcellular environment; b) a macro-structural volumetric measure of the hippocampus; and c) concentration levels of N-acetylaspartate, a marker of neuronal health.

Discussion

This study will help to establish the contribution of the NPAS3 gene and its variants to brain tissue abnormalities in schizophrenia. Given the genetic and phenotypic heterogeneity of the disorder and the large variation in outcomes, the identification of biological subgroups may in future support tailoring of treatment approaches in order to optimize recovery.

【 授权许可】

   
2014 Bernier et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150128181156234.pdf 223KB PDF download
【 参考文献 】
  • [1]Karlsgodt KH, Jacobson SC, Seal SC, Fusar-Poli P: The relationship of developmental changes in white matter to the onset of psychosis. Curr Pharm Des 2012, 18:422-433.
  • [2]Ayalew M, Le-Niculescu H, Levey DF, Jain N, Changala B, Patel SD, Winiger E, Breier A, Shekhar A, Amdur R, Koller D, Numberger JI, Corvin A, Geyer M, Tsuang MT, Salomon D, Schork NJ, Fanous AH, O'Donovan MC, Niculescu AB: Convergent functional genomics of schizophrenia: from comprehensive understanding to genetic risk prediction. Mol Psychiatry 2012, 19:887-905.
  • [3]Allen NC, Bagade S, McQueen MB, Ioannidis JP, Kawoura FK, Khouri MJ, Tanzi RE, Bertram L: Systematic meta-analyses and field synopsis of genetic association studies in schizophrenia: the Sz Gene database. Nat Genet 2008, 40:827-834.
  • [4]Li M, Zhang H, Luo XJ, Gao L, Qi XB, Gourraud PA, Gourraud PA, Su B: Meta-analysis indicates that the European GWAS-identified risk SNP rs1344706 within ZNF804A is not associated with schizophrenia in Han Chinese population. PLoS One 2013, 8:e65780.
  • [5]Tsutsumi A, Glatt SJ, Kanazawa T, Kawashige S, Uenishi H, Hokyo A, Kaneko T, Moritani M, Kikuyama H, Koh J, Matsumura H, Yoneda H: The genetic validation of heterogeneity in schizophrenia. Behav Brain Funct 2011, 7:43. BioMed Central Full Text
  • [6]Kamnasaran D, Muir WJ, Ferguson-Smith MA, Cox DW: Disruption of the neuronal PAS3 gene in a family affected with schizophrenia. J Med Genet 2003, 40:325-332.
  • [7]Pickard BS, Malloy MP, Porteous DJ, Blackwood DH, Muir WJ: Disruption of a brain transcription factor, NPAS3, is associated with schizophrenia and learning disability. Am J Med Genet B Neuropsychiatr Genet 2005, 136B:26-32.
  • [8]Kamnasaran D, Chen CP, Devriendt K, Mehta L, Cox DW: Defining a holoprosencephaly locus on human chromosome 14q13 and characterization of potential candidate genes. Genomics 2005, 85:608-621.
  • [9]Brunskill EW, Ehrman LA, Williams MT, Klanke J, Hammer D, Schaefer TL, Sah R, end Dorn GW, Potter SS, Vorthees CV: Abnormal neurodevelopment, neurosignaling and behaviour in Npas3-deficient mice. Eur J Neurosci 2005, 22:1265-1276.
  • [10]Moreira F, Kiehl T-R, So K, Ajeawung NF, Honculada C, Gould P, Pieper RO, Kamnasaran D: NPAS3 demonstrates features of a tumor suppressive role in driving the progression of astrocytomas. Am J Pathol 2011, 179:462-476.
  • [11]Wong J, Duncan CE, Beveridge NJ, Webster MJ, Cairns MJ, Weickert CS: Expression of NPAS3 in the human cortex and evidence of its posttranscriptional regulation by miR-17 during development, with implications for schizophrenia. Schizophr Bull 2013, 39:396-406.
  • [12]Sha L, MacIntyre L, Machell JA, Kelly MP, Porteous DJ, Brandon NJ, Muir WJ, Blackwood DH, Watson DG, Clapcote SJ, Pickard BS: Transcriptional regulation of neurodevelopmental and metabolic pathways by NPAS3. Mol Psychiatry 2012, 17:267-279.
  • [13]Pollard KS, Salama SR, King B, Kern AD, Dreszer T, Katzman S, Siepel A, Pedersen JS, Bejerano G, Baertsch R, Rosenbloom KR, Kent J, Haussler D: Forces shaping the fastest evolving regions in the human genome. PLoS Genet 2006, 2:e168.
  • [14]Kamm GB, Pisciottano F, Kliger R, Franchini LF: The developmental brain gene NPAS3 contains the largest number of accelerated regulatory sequences in the human genome. Mol Biol Evol 2013, 30:1088-1102.
  • [15]Macintyre G, Alford T, Xiong L, Rouleau GA, Tibbo PG, Cox DW: Association of NPAS3 exonic variation with schizophrenia. Schizophr Res 2010, 120:143-149.
  • [16]Saunders CT, Baker D: Evaluation of structural and evolutionary contributions to deleterious mutation prediction. J Mol Biol 2002, 322:891-901.
  • [17]Cartegni L, Krainer AR: Disruption of an SF2/ASF-dependent exonic splicing enhancer in SMN2 causes spinal muscular atrophy in the absence of SMN1. Nat Genet 2002, 30:377-384.
  • [18]Cartegni L, Wang J, Zhu Z, Zhang MQ, Krainer AR: ESEfinder: a web resource to identify exonic splicing enhancers. Nucleic Acids Res 2003, 31:3568-3571.
  • [19]Pickard BS, Christoforou A, Thomson PA, Fawkes A, Evans KL, Morris SW, Porteous DJ, Blackwood DH, Muir WJ: Interacting haplotypes at the NPAS3 locus alter risk of schizophrenia and bipolar disorder. Molecular Psychiatry 2009, 14:874-884.
  • [20]Erbel-Sieler C, Dudley C, Zhou Y, Wu X, Estill SJ, Han T, Diaz-Arrastia R, Brunskill EW, Potter SS, McKnight SL: Behavioral and regulatory abnormalities in mice deficient in the NPAS1 and NPAS3 transcription factors. Proc Natl Acad Sci U S A 2004, 101:13648-13653.
  • [21]Pieper AA, Wu X, Han TW, Estill SJ, Dang Q, Wu LC, Reece-Fincanon S, Dudley CA, Richardson JA, Brat DJ, McKnight SL: The neuronal PAS domain protein 3 transcription factor controls FGF-mediated adult hippocampal neurogenesis in mice. Proc Natl Acad Sci U S A 2005, 102:14052-14057.
  • [22]Pieper AA, Xie S, Capota E, Estill SJ, Zhong J, Long JM, Becker GL, Huntington P, Goldman SE, Shen CH, Capota M, Britt JK, Kotti T, Ure K, Brat DJ, Williams NS, MacMillan KS, Naidoo J, Melito L, Hsieh J, De Brabander J, Ready JM, McKnight SL: Discovery of a proneurogenic, neuroprotective chemical. Cell 2010, 142:39-51.
  • [23]Hetherington HP, Mason GF, Pan JW, Ponder SL, Vaughan JT, Twieg DB, Pohost GM: Evaluation of cerebral gray and white matter metabolite differences by spectroscopic imaging at 4.1 T. Magn Reson Med 1994, 32:565-571.
  • [24]Moffet JR, Ross B, Arun P, Madhavarao CN, Namboodiri AMA: N-acetylaspartate in the CNS: From neurodiagnosis to neurobiology. Prog Neurobiol 2007, 81:89-131.
  • [25]Öngür D, Prescot AP, Jensen JE, Rouse ED, Cohen BM, Renshaw PF, Olson DP: T2 relaxation time abnormalities in bipolar disorder and schizophrenia. Magn Res Med 2010, 63:1-8.
  • [26]Kirov II, Fleysher L, Fleysher R, Patil V, Liu S, Gonen O: Age dependence of regional proton metabolites T2 relaxation times in the human brain at 3 T. Magn Reson Med 2008, 60:790-795.
  • [27]Tunc-Skarka N, Weber-Fahr W, Hoerst M, Meyer-Lindenberg A, Zink M, Ende G: MR spectroscopic evaluation of N-acetylaspartate’s T2 relaxation time and concentration corroborates white matter abnormalities in schizophrenia. NeuroImage 2009, 48:525-531.
  • [28]Du F, Cooper A, Cohen BM, Renshaw PF, Öngür D: Water and metabolite transverse T2 relaxation time abnormalities in the white matter in schizophrenia. Schizophr Res 2012, 137:241-245.
  • [29]Jeste DV, Lohr JB: Hippocampal pathologic findings in schizophrenia. A morphometric study. Arch Gen Psychiatry 1989, 46:1019-1024.
  • [30]Benes FM, Sorensen I, Bird ED: Reduced neuronal size in posterior hippocampus of schizophrenic patients. Schizophr Bull 1991, 17:597-608.
  • [31]Falkai P, Bogerts B, Rozumec M: Limbic pathology in schizophrenia. Biol Psychiatry 1988, 24:515-521.
  • [32]Heckers S, Konradi C: Hippocampal neurons in schizophrenia. J Neural Transm 2002, 109:891-905.
  • [33]Honea R, Crow TJ, Passingham D, Mackay CE: Regional deficits in brain volume in schizophrenia: a meta-analysis of voxel-based morphomotry studies. Am J Psychiatry 2005, 162:2233-2245.
  • [34]Shepherd AM, Laurens KR, Matheson SL, Carr VJ, Green MJ: Systematic meta-review and quality assessment of the structural brain alterations in schizophrenia. Neurosci Biobehav Rev 2012, 36:1342-1356.
  • [35]Tae WS, Kim SS, Lee KU, Nam EC, Kim KW: Validation of hippocampal volumes measured using a manual method and two automated methods (FreeSurfer and IBASPM) in chronic major depressive disorder. Neuroradiology 2008, 50:569-581.
  • [36]Chang L, Friedman J, Ernst T, Zhong K, Tsopelas ND, Davis K: Brain metabolite abnormalities in the white matter of elderly schizophrenic subjects: implication for glial dysfunction. Biol Psychiatry 2007, 62:1396-1404.
  • [37]Klär AA, Ballmaier M, Leopold K, Häke I, Schaefer M, Brühl R, Schubert F, Gallinat J: Interaction of hippocampal volume and N-acetylaspartate concentration deficits in schizophrenia: a combined MRI and 1H-MRS study. NeuroImage 2010, 53:51-57.
  • [38]Tang CY, Friedman J, Shungu D, Chang L, Ernst T, Stewart D, Hajianpour A, Carpenter D, Ng J, Mao X, Hof PR, Buchsbaum MS, Davis K, Gorman JM: Correlations between Diffusion Tensor Imaging (DTI) and Magnetic Resonance Spectroscopy (1H-MRS) in schizophrenic patients and normal controls. BMC Psychiatry 2007, 7:25. BioMed Central Full Text
  • [39]Maier M, Ron MA: Hippocampal age-related changes in schizophrenia: a proton magnetic resonance spectroscopy study. Schizophr Res 1996, 22:5-17.
  • [40]Szulc A, Galiñska B, Tarasów E, Kubas B, Dzienis W, Konarzewska B, Poplawska R, Tornczak AA, Czernikiewicz A, Walecki J: N-acetylaspartate (NAA) levels in selected areas of the brain in patients with chronic schizophrenia treated with typical and atypical neuroleptics: a proton magnetic resonance spectroscopy (1H-MRS) study. Med Sci Monit 2007, 13:17-22.
  • [41]Van Elst LT, Valerius G, Büchert M, Thiel T, Rüsch N, Bubl E, Hennig J, Ebert D, Olbrich HM: Increased prefrontal and hippocampal glutamate concentration in schizophrenia: evidence from a magnetic resonance spectroscopy study. Biol Psychiatry 2005, 58:724-730.
  • [42]Venkatraman TN, Hamer RM, Perkins DO, Song AW, Lieberman JA, Steen RG: Single-voxel 1H PRESS at 4.0 T: precision and variability of measurements in anterior cingulate and hippocampus. NMR Biomed 2006, 19:484-491.
  • [43]Galiñska B, Szulc A, Tarasów E, Kubas B, Dzienis W, Czernikiewick A, Walecki J: Duration of untreated psychosis and proton magnetic resonance spectroscopy (1H-MRS) findings in first-episode schizophrenia. Med Sci Monit 2009, 15:CR82-CR88.
  • [44]Wood SJ, Berger GE, Wellard RM, Proffitt T, McConchie M, Velakoulis D, McGorry PD, Pantelis C: A 1H-MRS investigation of the medial temporal lobe in antipsychotic-naïve and early-treated first episode psychosis. Schizophr Res 2008, 102:163-170.
  • [45]Canadian Centre on Substance Abuse: Canada’s Low-Risk Alcohol Drinking Guidelines. 2013. http://www.ccsa.ca/Eng/topics/alcohol/drinking-guidelines/Pages/default.aspx webcite
  • [46]Bora E, Fornito A, Radua J, Walterfang M, Seal M, Wood SJ, Yücel M, Velakoulis D, Pantelis C: Neuroanatomical abnormalities in schizophrenia: a multimodal voxelwise meta-analysis and meta-regression analysis. Schizophr Res 2011, 127:46-57.
  • [47]Steen RG, Hamer RM, Lieberman JA: Measurement of brain metabolites by 1H magnetic resonance spectroscopy in patients with schizophrenia: a systematic review and meta-analysis. Neuropsychopharmacology 2005, 30:1949-1962.
  • [48]MacKay A, Laule C, Vavasour I, Bjarnason T, Kolind S, Mädler B: Insights into brain microstructure from the T2 distribution. Magn Res Imaging 2006, 24:515-525.
  • [49]Bartha R, Drost DJ, Williamson PC: Factors affecting the quantification of short echo in-vivo 1H MR spectra: prior knowledge, peak elimination, and filtering. NMR Biomed 1999, 12:205-216.
  • [50]Bernier D, Bartha R, Devarajan S, MacMaster FP, Schmidt MH, Rusak B: Effects of overnight sleep restriction on brain chemistry and mood in women with unipolar depression and healthy controls. J Psychiatry Neurosci 2009, 34:352-360.
  • [51]Tibbo P, Bernier D, Hanstock CC, Seres P, Lakusta B, Purdon SE: 3-T proton magnetic spectroscopy in unmedicated first episode psychosis: a focus on creatine. Magn Reson Med 2013, 69:613-620.
  • [52]Ke Y, Cohen BM, Lowen S, Hirashima L, Nassar L, Renshaw PF: Biexponential transverse relaxation (T2) of the proton MRS creatine resonance in human brain. Magn Res Med 2002, 47:232-238.
  • [53]Gilat A: MATLAB: An introduction with Applications. 2nd edition. Mississauga: John Wiley & Sons; 2004.
  • [54]Woolrich MW, Jbabdi S, Patenaude B, Chappell M, Makni S, Behrens T, Beckmann C, Jenkinson M, Smith SM: Bayesian analysis of neuroimaging data in FSL. NeuroImage 2009, 45:S173-S186.
  • [55]Cox RW: AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput Biomed Res 1996, 29:162-173.
  文献评价指标  
  下载次数:3次 浏览次数:14次