期刊论文详细信息
BMC Systems Biology
Detecting cellular reprogramming determinants by differential stability analysis of gene regulatory networks
Antonio del Sol1  Wiktor Jurkowski1  Thanneer M Perumal1  Isaac Crespo1 
[1] Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4362, Esch-Belval, Luxembourg
关键词: Reprogramming determinants;    Positive circuit;    Attractor;    Stability;    Dedifferentiation;    Transdifferentiation;    Cellular reprogramming;   
Others  :  1141703
DOI  :  10.1186/1752-0509-7-140
 received in 2013-05-31, accepted in 2013-12-11,  发布年份 2013
PDF
【 摘 要 】

Background

Cellular differentiation and reprogramming are processes that are carefully orchestrated by the activation and repression of specific sets of genes. An increasing amount of experimental results show that despite the large number of genes participating in transcriptional programs of cellular phenotypes, only few key genes, which are coined here as reprogramming determinants, are required to be directly perturbed in order to induce cellular reprogramming. However, identification of reprogramming determinants still remains a combinatorial problem, and the state-of-art methods addressing this issue rests on exhaustive experimentation or prior knowledge to narrow down the list of candidates.

Results

Here we present a computational method, without any preliminary selection of candidate genes, to identify reduced subsets of genes, which when perturbed can induce transitions between cellular phenotypes. The method relies on the expression profiles of two stable cellular phenotypes along with a topological analysis stability elements in the gene regulatory network that are necessary to cause this multi-stability. Since stable cellular phenotypes can be considered as attractors of gene regulatory networks, cell fate and cellular reprogramming involves transition between these attractors, and therefore current method searches for combinations of genes that are able to destabilize a specific initial attractor and stabilize the final one in response to the appropriate perturbations.

Conclusions

The method presented here represents a useful framework to assist researchers in the field of cellular reprogramming to design experimental strategies with potential applications in the regenerative medicine and disease modelling.

【 授权许可】

   
2013 Crespo et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150327113505458.pdf 2212KB PDF download
Figure 7. 69KB Image download
Figure 6. 55KB Image download
Figure 5. 225KB Image download
Figure 4. 54KB Image download
Figure 3. 154KB Image download
Figure 2. 90KB Image download
Figure 1. 70KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

【 参考文献 】
  • [1]Kauffman SA: Metabolic stability and epigenetics in randomly constructed genetics nets. J Theor Biol 1969, 22:437-467.
  • [2]Kauffman SA: The origins of order: self organization and selection in evolutions. New York: Oxford UniversityPress; 1993.
  • [3]Huang S, Eichler G, Bar-Yam Y, Ingber DE: Cell fates as high-dimensional attractor states of a complex gene regulatory network. Phys Rev Lett 2005, 94(12):128701.
  • [4]Huang P, He Z, Ji S, Sun H, Xiang D, Liu C, Hu Y, Wang X, Hui L: Induction of functional hepatocyte-like cells from mouse fibroblasts by defined factors. Nature 2011, 475(7356):386-389.
  • [5]Ieda M, Fu JD, Delgado-Olguin P, Vedantham V, Hayashi Y, Bruneau BG, Srivastava D: Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell 2010, 142(3):375-386.
  • [6]Szabo SJ, Kim ST, Costa GL, Zhang X, Fathman CG, Glimcher LH: A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell 2000, 100(6):655-669.
  • [7]Vierbuchen T, Ostermeier A, Pang ZP, Kokubu Y, Sudhof TC, Wernig M: Direct conversion of fibroblasts to functional neurons by defined factors. Nature 2010, 463(7284):1035-1041.
  • [8]Chang R, Shoemaker R, Wang W: Systematic search for recipes to generate induced pluripotent stem cells. PLoS Comput Biol 2011, 7(12):e1002300.
  • [9]Ding S, Wang W: Recipes and mechanisms of cellular reprogramming: a case study on budding yeast Saccharomyces cerevisiae. BMC Syst Biol 2011, 5:50. BioMed Central Full Text
  • [10]Thomas R, Thieffry D, Kaufman M: DYnamical behavior of biological regulatory networks.1. Biological role of feedback loops and practical use of the concept of the loop-characteristic state. Bull Math Biol 1995, 57(2):247-276.
  • [11]Crespo I, Del Sol A: A general strategy for cellular reprogramming: the importance of transcription factor cross-repression. Stem Cells 2013, 31(10):2127-2135.
  • [12]Takahashi K: Cellular reprogramming–lowering gravity on Waddington’s epigenetic landscape. J Cell Sci 2012, 125(Pt 11):2553-2560.
  • [13]Kauffman S: Origins of Order: self-organization and selection in evolution. New York: Oxford UniversityPress; 1993.
  • [14]Waddington CH: The Strategy of the Genes. In Macmillan Publishers Limited. Allen & Unwin; 1957.
  • [15]Mendoza L: A network model for the control of the differentiation process in Th cells. Biosystems 2006, 84(2):101-114.
  • [16]Moes M, Le Bechec A, Crespo I, Laurini C, Halavatyi A, Vetter G, Del Sol A, Friederich E: A novel network integrating a miRNA-203/SNAI1 feedback loop which regulates epithelial to mesenchymal transitin. PLoS One 2012, 7(4):e35440.
  • [17]Siemens H, Jackstadt R, Hunten S, Kaller M, Menssen A, Gotz U, Hermeking H: miR-34 and SNAIL form a double-negative feedback loop to regulate epithelial-mesenchymal transitions. Cell Cycle 2011, 10(24):4256-4271.
  • [18]Daraselia N, Yuryev A, Egorov S, Novichkova S, Nikitin A, Mazo I: Extracting human protein interactions from MEDLINE using a full-sentence parser. Bioinformatics 2004, 20(5):604-611.
  • [19]Novichkova S, Egorov S, Daraselia N: MedScan, a natural language processing engine for MEDLINE abstracts. Bioinformatics 2003, 19(13):1699-1706.
  • [20]Wang J, Lu M, Qiu C, Cui Q: TransmiR: a transcription factor–microRNA regulation database. Nucleic Acids Res 2010, 38(suppl 1):D119-D122.
  • [21]Hsu S-D, Lin F-M, Wu W-Y, Liang C, Huang W-C, Chan W-L, Tsai W-T, Chen G-Z, Lee C-J, Chiu C-M, et al.: miRTarBase: a database curates experimentally validated microRNA–target interactions. Nucleic Acids Res 2010, 39:D163-D169.
  • [22]Crespo I, Krishna A, Le Bechec A, Del Sol A: Predicting missing expression values in gene regulatory networks using a discrete logic modeling optimization guided by network stable states. Nucleic Acids Res 2012, 41:e8.
  • [23]Hwang ES, Szabo SJ, Schwartzberg PL, Glimcher LH: T helper cell fate specified by kinase-mediated interaction of T-bet with GATA-3. Science 2005, 307(5708):430-433.
  • [24]Lee HJ, Takemoto N, Kurata H, Kamogawa Y, Miyatake S, O’Garra A, Arai N: GATA-3 induces T helper cell type 2 (Th2) cytokine expression and chromatin remodeling in committed Th1 cells. J Exp Med 2000, 192(1):105-115.
  • [25]Gallagher R, Collins S, Trujillo J, McCredie K, Ahearn M, Tsai S, Metzgar R, Aulakh G, Ting R, Ruscetti F, et al.: Characterization of the continuous, differentiating myeloid cell line (HL-60) from a patient with acute promyelocytic leukemia. Blood 1979, 54(3):713-733.
  • [26]Tomonaga M, Golde DW, Gasson JC: Biosynthetic (recombinant) human granulocyte-macrophage colony-stimulating factor: effect on normal bone marrow and leukemia cell lines. Blood 1986, 67(1):31-36.
  • [27]Collins SJ, Ruscetti FW, Gallagher RE, Gallo RC: Terminal differentiation of human promyelocytic leukemia cells induced by dimethyl sulfoxide and other polar compounds. Proc Natl Acad Sci USA 1978, 75(5):2458-2462.
  • [28]Breitman TR, Selonick SE, Collins SJ: Induction of differentiation of the human promyelocytic leukemia cell line (HL-60) by retinoic acid. Proc Natl Acad Sci U S A 1980, 77(5):2936-2940.
  • [29]McCarthy DM, San Miguel JF, Freake HC, Green PM, Zola H, Catovsky D, Goldman JM: 1,25-dihydroxyvitamin D3 inhibits proliferation of human promyelocytic leukaemia (HL60) cells and induces monocyte-macrophage differentiation in HL60 and normal human bone marrow cells. Leuk Res 1983, 7(1):51-55.
  • [30]Rovera G, Santoli D, Damsky C: Human promyelocytic leukemia cells in culture differentiate into macrophage-like cells when treated with a phorbol diester. Proc Natl Acad Sci USA 1979, 76(6):2779-2783.
  • [31]Shen M, Bunaciu RP, Congleton J, Jensen HA, Sayam LG, Varner JD, Yen A: Interferon regulatory factor-1 binds c-Cbl, enhances mitogen activated protein kinase signaling and promotes retinoic acid-induced differentiation of HL-60 human myelo-monoblastic leukemia cells. Leuk Lymphoma 2011, 52(12):2372-2379.
  • [32]Sekiya S, Suzuki A: Direct conversion of mouse fibroblasts to hepatocyte-like cells by defined factors. Nature 2011, 475(7356):390-393.
  • [33]McBurney MW: P19 embryonal carcinoma cells. Int J Dev Biol 1993, 37(1):135-140.
  • [34]Hu DL, Chen FK, Liu YQ, Sheng YH, Yang R, Kong XQ, Cao KJ, Gu HT, Qian LM: GATA-4 promotes the differentiation of P19 cells into cardiac myocytes. Int J Mol Med 2010, 26(3):365-372.
  • [35]Li H, Zuo S, Pasha Z, Yu B, He Z, Wang Y, Yang X, Ashraf M, Xu M: GATA-4 promotes myocardial transdifferentiation of mesenchymal stromal cells via up-regulating IGFBP-4. Cytotherapy 2011, 13(9):1057-1065.
  • [36]Chia NY, Chan YS, Feng B, Lu X, Orlov YL, Moreau D, Kumar P, Yang L, Jiang J, Lau MS, et al.: A genome-wide RNAi screen reveals determinants of human embryonic stem cell identity. Nature 2010, 468(7321):316-320.
  • [37]Spike BT, Wahl GM: p53, Stem cells, and reprogramming: tumor suppression beyond guarding the genome. Genes Cancer 2011, 2(4):404-419.
  • [38]Miura K, Okada Y, Aoi T, Okada A, Takahashi K, Okita K, Nakagawa M, Koyanagi M, Tanabe K, Ohnuki M, et al.: Variation in the safety of induced pluripotent stem cell lines. Nat Biotechnol 2009, 27(8):743-745.
  • [39]Carro MS, Lim WK, Alvarez MJ, Bollo RJ, Zhao X, Snyder EY, Sulman EP, Anne SL, Doetsch F, Colman H, et al.: The transcriptional network for mesenchymal transformation of brain tumours. Nature 2010, 463(7279):318-325.
  • [40]Margolin AA, Nemenman I, Basso K, Wiggins C, Stolovitzky G, Dalla Favera R, Califano A: ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinformatics 2006, 7(Suppl 1):S7. BioMed Central Full Text
  • [41]DeWitt N: Regenerative medicine. Nature 2008, 453(7193):301.
  • [42]Cherry AB, Daley GQ: Reprogramming cellular identity for regenerative medicine. Cell 2012, 148(6):1110-1122.
  • [43]Schaffter T, Marbach D, Floreano D: GeneNetWeaver: in silico benchmark generation and performance profiling of network inference methods. Bioinformatics 2011, 27(16):2263-2270.
  • [44]Mollinedo F, Lopez-Perez R, Gajate C: Differential gene expression patterns coupled to commitment and acquisition of phenotypic hallmarks during neutrophil differentiation of human leukaemia HL-60 cells. Gene 2008, 419(1–2):16-26.
  • [45]Koide T, Hayata T, Cho KW: Xenopus as a model system to study transcriptional regulatory networks. Proc Natl Acad Sci USA 2005, 102(14):4943-4948.
  • [46]Locke JC, Kozma-Bognar L, Gould PD, Feher B, Kevei E, Nagy F, Turner MS, Hall A, Millar AJ: Experimental validation of a predicted feedback loop in the multi-oscillator clock of Arabidopsis thaliana. Mol Syst Biol 2006, 2:59.
  • [47]Rosenfeld N, Elowitz MB, Alon U: Negative autoregulation speeds the response times of transcription networks. J Mol Biol 2002, 323(5):785-793.
  • [48]Garg A, Di Cara A, Xenarios I, Mendoza L, De Micheli G: Synchronous versus asynchronous modeling of gene regulatory networks. Bioinformatics 2008, 24(17):1917-1925.
  • [49]Garg A, Xenarios I, Mendoza L, DeMicheli G: An efficient method for dynamic analysis of gene regulatory networks and in silico gene perturbation experiments. In Lecture Notes in Computer Science, Vol 4453. Edited by Speed T, Huang H. Berling/Heidelberg: Springer; 2007:62-76.
  • [50]Conzelmann H, Saez-Rodriguez J, Sauter T, Bullinger E, Allgower F, Gilles ED: Reduction of mathematical models of signal transduction networks: simulation-based approach applied to EGF receptor signalling. Syst Biol (Stevenage) 2004, 1(1):159-169.
  • [51]Johnson DB: Finding all the elementary circuits of a directed graph. SIAM J Comput 1975, 4(1):77-84.
  文献评价指标  
  下载次数:57次 浏览次数:16次