期刊论文详细信息
BMC Microbiology
Extracellular excystation and development of Cryptosporidium: tracing the fate of oocysts within Pseudomonas aquatic biofilm systems
Peta L Clode1  Paul Monis2  Hanna Edwards4  Andrew Thompson4  Wan Koh3 
[1] Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, 35 Stirling Hwy, Crawley 6009, WA, Australia;South Australian Water Corporation, 250 Victoria Square, Adelaide 5000, SA, Australia;School of Occupational and Public Health, Ryerson University, 350 Victoria Street, Toronto M5B2K3, Ontario, Canada;School of Veterinary and Life Sciences, Murdoch University, South Street, Murdoch 6150, WA, Australia
关键词: Flow cytometry;    Scanning electron microscope;    Confocal microscope;    Excystation;    Extracellular multiplication;    Biofilms;    Cryptosporidium;   
Others  :  1137731
DOI  :  10.1186/s12866-014-0281-8
 received in 2014-07-30, accepted in 2014-10-30,  发布年份 2014
PDF
【 摘 要 】

Background

Aquatic biofilms often serve as environmental reservoirs for microorganisms and provide them with a nutrient-rich growth environment under harsh conditions. With regard to Cryptosporidium, biofilms can serve as environmental reservoirs for oocysts, but may also support the growth of additional Cryptosporidium stages.

Results

Here we used confocal laser scanning microscopy, scanning electron microscopy (SEM), and flow cytometry to identify and describe various Cryptosporidium developmental stages present within aquatic biofilm systems, and to directly compare these to stages produced in cell culture. We also show that Cryptosporidium has the ability to form a parasitophorous vacuole independently, in a host-free biofilm environment, potentially allowing them to complete an extracellular life cycle. Correlative data from confocal and SEM imaging of the same cells confirmed that the observed developmental stages (including trophozoites, meronts, and merozoites) were Cryptosporidium. These microscopy observations were further supported by flow cytometric analyses, where excysted oocyst populations were detected in 1, 3 and 6 day-old Cryptosporidium-exposed biofilms, but not in biofilm-free controls.

Conclusions

These observations not only highlight the risk that aquatic biofilms pose in regards to Cryptosporidium outbreaks from water distribution systems, but further indicate that even simple biofilms are able to stimulate oocyst excystation and support the extracellular multiplication and development of Cryptosporidium within aquatic environments.

【 授权许可】

   
2014 Koh et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150317185548740.pdf 4425KB PDF download
Figure 8. 137KB Image download
Figure 7. 96KB Image download
Figure 6. 87KB Image download
Figure 5. 126KB Image download
Figure 4. 110KB Image download
Figure 3. 16KB Image download
Figure 2. 40KB Image download
Figure 1. 59KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

【 参考文献 】
  • [1]Thompson RCA, Olson ME, Zhu G, Enomoto S, Abrahamsen MS, Hijjawi NS: Cryptosporidium and cryptosporidiosis. Adv Parasitol 2005, 59:77-158.
  • [2]Howe AD, Forster S, Morton S, Marshall R, Osborn KS, Wright P, Hunter PR: Cryptosporidium oocysts in a water supply associated with a cryptosporidiosis outbreak. Emerg Infect Dis 2002, 8(6):619-624.
  • [3]Wingender J, Flemming HC: Biofilms in drinking water and their role as reservoir for pathogens. Int J Hyg Environ Health 2011, 214(6):417-423.
  • [4]Rogers J, Keevil C: Survival of Cryptosporidium parvum oocysts in biofilm and planktonic samples in a model system. In Protozoan parasites and water. Edited by Betts W, Casemore D, Fricker C, Smith H, Watkins J. The Royal Society of Chemistry, Cambridge; 1995.
  • [5]Wolyniak EA, Hargreaves BR, Jellison KL: Retention and release of Cryptosporidium parvum oocysts by experimental biofilms composed of a natural stream microbial community. Appl Environ Microbiol 2009, 75(13):4624-4626.
  • [6]Wolyniak EA, Hargreaves BR, Jellison KL: Seasonal retention and release of Cryptosporidium parvum oocysts by environmental biofilms in the laboratory. Appl Environ Microbiol 2010, 76(4):1021-1027.
  • [7]Keevil CW: Rapid detection of biofilms and adherent pathogens using scanning confocal laser microscopy and episcopic differential interference contrast microscopy. Water Sci Technol vol 2003, 47:105-116.
  • [8]Parsek MR, Singh PK: Bacterial biofilms: an emerging link to disease pathogenesis. Annu Rev Microbiol 2003, 57(1):677-701.
  • [9]Searcy KE, Packman AI, Atwill ER, Harter T: Capture and retention of Cryptosporidium parvum oocysts by Pseudomonas aeruginosa biofilms. Appl Environ Microbiol 2006, 72(9):6242-6247.
  • [10]Fisher I, Angles M, Chandy J, Cox P, Warnecke M, Kastl G, Jegatheesan V: Biofilms - a sticky situation for drinking water? Water 2000, 27(2):33-37.
  • [11]Angles ML, Chandy JP, Cox PT, Fisher IH, Warnecke MR: Implications of biofilm-associated waterborne Cryptosporidium oocysts for the water industry. Trends Parasitol 2007, 23(8):352-356.
  • [12]Holt D: Challenge of controlling biofilms in water distribution system. Bioline, Cardiff; 1995.
  • [13]Borowski H, Thompson RCA, Armstrong T, Clode PL: Morphological characterization of Cryptosporidium parvum life-cycle stages in an in vitro model system. Parasitology 2010, 137(1):13-26.
  • [14]Hijjawi NS, Meloni BP, Ng'anzo M, Ryan UM, Olson ME, Cox PT, Monis PT, Thompson RCA: Complete development of Cryptosporidium parvum in host cell-free culture. Int J Parasitol 2004, 34(7):769-777.
  • [15]Karanis P, Kimura A, Nagasawa H, Igarashi I, Suzuki N: Observations on Cryptosporidium life cycle stages during excystation. J Parasitol 2008, 94(1):298-300.
  • [16]Boxell A, Hijjawi N, Monis P, Ryan U: Comparison of various staining methods for the detection of Cryptosporidium in cell-free culture. Exp Parasitol 2008, 120(1):67-72.
  • [17]Hijjawi N, Estcourt A, Yang R, Monis P, Ryan U: Complete development and multiplication of Cryptosporidium hominis in cell-free culture. Vet Parasitol 2010, 169(1–2):29-36.
  • [18]Zhang L, Sheoran AS, Widmer G: Cryptosporidium parvum DNA replication in cell-free culture. J Parasitol 2009, 95(5):1239-1242.
  • [19]Koh W, Clode P, Monis P, Thompson R: Multiplication of the waterborne pathogen Cryptosporidium parvum in an aquatic biofilm system. Parasit Vectors 2013, 6(1):270. BioMed Central Full Text
  • [20]Kato S, Bowman DD: Using flow cytometry to determine the viability of Cryptosporidium parvum oocysts extracted from spiked environmental samples in chambers. Parasitol Res 2002, 88(4):326-331.
  • [21]King BJ, Hoefel D, Lim SP, Robinson BS, Monis PT: Flow cytometric assessment of distinct physiological stages within Cryptosporidium parvum sporozoites post-excystation. Parasitology 2009, 136(09):953-966.
  • [22]Vesey G, Griffiths KR, Gauci MR, Deere D, Williams KL, Veal DA: Simple and rapid measurement of Cryptosporidium excystation using flow cytometry. Int J Parasitol 1997, 27(11):1353-1359.
  • [23]Landsberg J, Paperna I: Ultrastructural study of the coccidian Cryptosporidium sp. from stomachs of juvenile cichlid fish. Dis Aquat Organ 1986, 2:13-20.
  • [24]Woods KM, Upton SJ: In vitro development of Cryptosporidium parvum in serum-free media. Lett Appl Microbiol 2007, 44(5):520-523.
  • [25]Rosales MJ, Arnedo T, Mascaró C: Ultrastructural details of Cryptosporidium parvum development in calf intestine. Mem Inst Oswaldo Cruz 1998, 93(6):847-850.
  • [26]Current WL, Reese NC: A comparison of endogenous development of three isolates of Cryptosporidium in suckling mice. J Protozool 1986, 33(1):98-108.
  • [27]Valigurová A, Hofmannová L, Koudela B, Vávra J: An ultrastructural comparison of the attachment sites between Gregarina steini and Cryptosporidium muris. J Eukaryot Microbiol 2007, 54(6):495-510.
  • [28]Valigurová A, Jirků M, Koudela B, Gelnar M, Modrý D, Šlapeta J: Cryptosporidia: epicellular parasites embraced by the host cell membrane. Int J Parasitol 2008, 38(8–9):913-922.
  • [29]Pohlenz J, Bemrick WJ, Moon HW, Cheville NF: Bovine cryptosporidiosis: a transmission and scanning electron microscopic study of some stages in the life cycle and of the host parasite relationship. Vet Pathol 1978, 15(3):417-427.
  • [30]Alarcón ME, Huang CG, Tsai YS, Chen WJ, Dubey AK, Wu WJ: Life cycle and morphology of Steinina ctenocephali (Ross, comb. nov. (Eugregarinorida: Actinocephalidae), a gregarine of Ctenocephalides felis (Siphonaptera: Pulicidae) in Taiwan. Zool Stud 2011 1909, 50(6):763-772.
  • [31]Leander BS: Ultrastructure of the archigregarine Selenidium vivax (Apicomplexa)–a dynamic parasite of sipunculid worms (host: Phascolosoma agassizii). Mar Biol Res 2006, 2(3):178-190.
  • [32]Leander BS: Molecular phylogeny and ultrastructure of Selenidium serpulae (Apicomplexa, Archigregarinia) from the calcareous tubeworm Serpula vermicularis (Annelida, Polychaeta, Sabellida). Zoologica Scripta 2007, 36(2):213-227.
  • [33]Barta JR, Thompson RCA: What is Cryptosporidium? Reappraising its biology and phylogenetic affinities. Trends Parasitol 2006, 22(10):463-468.
  • [34]Karanis P, Aldeyarbi HM: Evolution of Cryptosporidium in vitro culture. Int J Parasitol 2011, 41(12):1231-1242.
  • [35]Meloni BP, Thompson RC: Simplified methods for obtaining purified oocysts from mice and for growing Cryptosporidium parvum in vitro. J Parasitol 1996, 82(5):757-762.
  • [36]Barraud N, Storey MV, Moore ZP, Webb JS, Rice SA, Kjelleberg S: Nitric oxide-mediated dispersal in single- and multi-species biofilms of clinically and industrially relevant microorganisms. Microb Biotechnol 2009, 2(3):370-378.
  • [37]Slifko TR, Huffman DE, Rose JB: A most-probable-number assay for enumeration of infectious Cryptosporidium parvum oocysts. Appl Environ Microbiol 1999, 65(9):3936-3941.
  • [38]Edwards H, Andrew Thompson R, Koh WH, Clode PL: Labeling surface epitopes to identify Cryptosporidium life stages using a scanning electron microscopy-based immunogold approach. Mol Cell Probes 2012, 26(1):21-28.
  • [39]Thurnheer T, Gmur R, Shapiro S, Guggenheim B: Mass transport of macromolecules within an in vitro model of supragingival plaque. Appl Environ Microbiol 2003, 69(3):1702-1709.
  • [40]Zhu M, Takenaka S, Sato M, Hoshino E: Extracellular polysaccharides do not inhibit the reaction between Streptococcus mutans and its specific immunoglobulin G (IgG) or penetration of the IgG through S. mutans biofilm. Oral Microbiol Immunol 2001, 16(1):54-56.
  • [41]Powell D, Czymmek K: A low cost correlative technique for cell imaging via confocal and scanning electron microscopy. Microsc Microanal 2009, 15(SupplementS2):940-941.
  • [42]Hijjawi NS, Meloni BP, Morgan UM, Thompson RCA: Complete development and long-term maintenance of Cryptosporidium parvum human and cattle genotypes in cell culture. Int J Parasitol 2001, 31(10):1048-1055.
  • [43]Hijjawi NS, Meloni BP, Ryan UM, Olson ME, Thompson RCA: Successful in vitro cultivation of Cryptosporidium andersoni: evidence for the existence of novel extracellular stages in the life cycle and implications for the classification of Cryptosporidium. Int J Parasitol 2002, 32(14):1719-1726.
  • [44]Petry F: Structural analysis of Cryptosporidium parvum. Microsc Microanal 2004, 10(5):586-601.
  文献评价指标  
  下载次数:61次 浏览次数:5次