期刊论文详细信息
BMC Immunology
New challenges in modern vaccinology
Béhazine Combadière1  Mireille Centlivre1 
[1] Centre d’Immunologie et des Maladies Infectieuses CIMI-Paris, 91 Boulevard de l’Hôpital, Paris, 75013, France
关键词: Adjuvants;    Route of administration;    Immune response;    Pathogens;    Correlates of protection;    Humanized mouse model;    Vaccination;   
Others  :  1149076
DOI  :  10.1186/s12865-015-0075-2
 received in 2014-10-07, accepted in 2015-02-05,  发布年份 2015
PDF
【 摘 要 】

Vaccination has been a major advance for health care, allowing eradication or reduction of incidence and mortality of various infectious diseases. However, there are major pathogens, such as Human Immunodeficiency Virus (HIV) or the causative agent of malaria, for which classical vaccination approaches have failed, therefore requiring new vaccination strategies. The development of new vaccine strategies relies on the ability to identify the challenges posed by these pathogens. Understanding the pathogenesis and correlates of protection for these diseases, our ability to accurately direct immune responses and to vaccinate specific populations are such examples of these roadblocks. In this respect, the use of a robust, cost-effective and predictive animal model that recapitulates features of both human infection and vaccination is currently a much-needed tool. We discuss here the major limitations faced by modern vaccinology and notably, the development of humanized mice for assessing the immune system, along with their potential as vaccine models.

【 授权许可】

   
2015 Centlivre and Combadiere; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150405020532878.pdf 361KB PDF download
【 参考文献 】
  • [1]Rappuoli R, Miller HI, Falkow S. Medicine. The intangible value of vaccination. Science. 2002; 297(5583):937-939.
  • [2]Pulendran B, Ahmed R. Immunological mechanisms of vaccination. Nat Immunol. 2011; 12(6):509-517.
  • [3]Nabel GJ. Designing tomorrow's vaccines. N Engl J Med. 2013; 368(6):551-560.
  • [4]Good MF, Doolan DL. Malaria vaccine design: immunological considerations. Immunity. 2010; 33(4):555-566.
  • [5]Wallace D, Canouet V, Garbes P, Wartel TA. Challenges in the clinical development of a dengue vaccine. Current opinion in virology. 2013; 3(3):352-356.
  • [6]Sabchareon A, Wallace D, Sirivichayakul C, Limkittikul K, Chanthavanich P, Suvannadabba S et al.. Protective efficacy of the recombinant, live-attenuated, CYD tetravalent dengue vaccine in Thai schoolchildren: a randomised, controlled phase 2b trial. Lancet. 2012; 380(9853):1559-1567.
  • [7]Shaw CA, Ciarlet M, Cooper BW, Dionigi L, Keith P, O'Brien KB et al.. The path to an RSV vaccine. Current opinion in virology. 2013; 3(3):332-342.
  • [8]Falzarano D, Feldmann H. Vaccines for viral hemorrhagic fevers–progress and shortcomings. Current opinion in virology. 2013; 3(3):343-351.
  • [9]Pulendran B, Oh JZ, Nakaya HI, Ravindran R, Kazmin DA. Immunity to viruses: learning from successful human vaccines. Immunol Rev. 2013;255(1):243–55.
  • [10]Pulendran B, Li S, Nakaya HI. Systems vaccinology. Immunity. 2010; 33(4):516-529.
  • [11]Pulendran B. Systems vaccinology: probing humanity's diverse immune systems with vaccines. Proc Natl Acad Sci U S A. 2014; 111(34):12300-12306.
  • [12]Mooney M, McWeeney S, Canderan G, Sekaly RP. A systems framework for vaccine design. Curr Opin Immunol. 2013; 25(5):551-555.
  • [13]Sette A, Rappuoli R. Reverse vaccinology: developing vaccines in the era of genomics. Immunity. 2010; 33(4):530-541.
  • [14]Kulp DW, Schief WR. Advances in structure-based vaccine design. Current opinion in virology. 2013; 3(3):322-331.
  • [15]McLellan JS, Chen M, Joyce MG, Sastry M, Stewart-Jones GB, Yang Y et al.. Structure-based design of a fusion glycoprotein vaccine for respiratory syncytial virus. Science. 2013; 342(6158):592-598.
  • [16]Coffman RL, Sher A, Seder RA. Vaccine adjuvants: putting innate immunity to work. Immunity. 2010; 33(4):492-503.
  • [17]Liu MA. Immunologic basis of vaccine vectors. Immunity. 2010; 33(4):504-515.
  • [18]Rollier CS, Reyes-Sandoval A, Cottingham MG, Ewer K, Hill AV. Viral vectors as vaccine platforms: deployment in sight. Curr Opin Immunol. 2011; 23(3):377-382.
  • [19]Buchbinder SP, Mehrotra DV, Duerr A, Fitzgerald DW, Mogg R, Li D et al.. Efficacy assessment of a cell-mediated immunity HIV-1 vaccine (the Step Study): a double-blind, randomised, placebo-controlled, test-of-concept trial. Lancet. 2008; 372(9653):1881-1893.
  • [20]Combadiere B, Liard C. Transcutaneous and intradermal vaccination. Hum Vaccin. 2011; 7(8):811-827.
  • [21]Combadiere B, Vogt A, Mahe B, Costagliola D, Hadam S, Bonduelle O et al.. Preferential amplification of CD8 effector-T cells after transcutaneous application of an inactivated influenza vaccine: a randomized phase I trial. PLoS One. 2010; 5(5):e10818.
  • [22]Vogt A, Mahe B, Costagliola D, Bonduelle O, Hadam S, Schaefer G et al.. Transcutaneous anti-influenza vaccination promotes both CD4 and CD8 T cell immune responses in humans. J Immunol. 2008; 180(3):1482-1489.
  • [23]Marra F, Young F, Richardson K, Marra CA. A meta-analysis of intradermal versus intramuscular influenza vaccines: immunogenicity and adverse events. Influenza Other Respi Viruses. 2013; 7(4):584-603.
  • [24]Delany I, Rappuoli R, De Gregorio E. Vaccines for the 21st century. EMBO Mol Med. 2014; 6(6):708-720.
  • [25]Gahr P, DeVries AS, Wallace G, Miller C, Kenyon C, Sweet K, Martin K, White K, Bagstad E, Hooker C et al: An Outbreak of Measles in an Undervaccinated Community. Pediatrics 2014;134(1):e220–8.
  • [26]Ishikawa F, Yasukawa M, Lyons B, Yoshida S, Miyamoto T, Yoshimoto G et al.. Development of functional human blood and immune systems in NOD/SCID/IL2 receptor {gamma} chain(null) mice. Blood. 2005; 106(5):1565-1573.
  • [27]Shultz LD, Lyons BL, Burzenski LM, Gott B, Chen X, Chaleff S et al.. Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2R gamma null mice engrafted with mobilized human hemopoietic stem cells. J Immunol. 2005; 174(10):6477-6489.
  • [28]Traggiai E, Chicha L, Mazzucchelli L, Bronz L, Piffaretti JC, Lanzavecchia A et al.. Development of a human adaptive immune system in cord blood cell-transplanted mice. Science. 2004; 304(5667):104-107.
  • [29]Gimeno R, Weijer K, Voordouw A, Uittenbogaart CH, Legrand N, Alves NL et al.. Monitoring the effect of gene silencing by RNA interference in human CD34+ cells injected into newborn RAG2-/- gammac-/- mice: functional inactivation of p53 in developing T cells. Blood. 2004; 104(13):3886-3893.
  • [30]Legrand N, Huntington ND, Nagasawa M, Bakker AQ, Schotte R, Strick-Marchand H et al.. Functional CD47/signal regulatory protein alpha (SIRP(alpha)) interaction is required for optimal human T- and natural killer- (NK) cell homeostasis in vivo. Proc Natl Acad Sci U S A. 2011; 108(32):13224-13229.
  • [31]Rongvaux A, Takizawa H, Strowig T, Willinger T, Eynon EE, Flavell RA et al.. Human hemato-lymphoid system mice: current use and future potential for medicine. Annu Rev Immunol. 2013; 31:635-674.
  • [32]Legrand N, van der Velden GJ, Ho Tsong Fang R, Douaisi M, Weijer K, Das AT et al.. A doxycycline-dependent human immunodeficiency virus type 1 replicates in vivo without inducing CD4+ T-cell depletion. J Gen Virol. 2012; 93(9):2017-2027.
  • [33]Centlivre M, Legrand N, Klamer S, Liu YP, Jasmijnvon Eije K, Bohne M et al.. Preclinical in vivo evaluation of the safety of a multi-shRNA-based gene therapy against HIV-1. Molecular therapy Nucleic acids. 2013; 2:e120.
  • [34]Denton PW, Garcia JV. Humanized mouse models of HIV infection. AIDS Rev. 2011; 13(3):135-148.
  • [35]Becker PD, Legrand N, Van Geelen CM, Noerder M, Huntington ND, Lim A et al.. Generation of human antigen-specific monoclonal IgM antibodies using vaccinated "human immune system" mice. PLoS One. 2010; 5:10.
  • [36]Watanabe Y, Takahashi T, Okajima A, Shiokawa M, Ishii N, Katano I et al.. The analysis of the functions of human B and T cells in humanized NOD/shi-scid/gammac(null) (NOG) mice (hu-HSC NOG mice). Int Immunol. 2009; 21(7):843-858.
  • [37]Strowig T, Gurer C, Ploss A, Liu YF, Arrey F, Sashihara J et al.. Priming of protective T cell responses against virus-induced tumors in mice with human immune system components. J Exp Med. 2009; 206(6):1423-1434.
  • [38]Shultz LD, Saito Y, Najima Y, Tanaka S, Ochi T, Tomizawa M et al.. Generation of functional human T-cell subsets with HLA-restricted immune responses in HLA class I expressing NOD/SCID/IL2r gamma(null) humanized mice. Proc Natl Acad Sci U S A. 2010; 107(29):13022. -13027
  • [39]Suzuki M, Takahashi T, Katano I, Ito R, Ito M, Harigae H et al.. Induction of human humoral immune responses in a novel HLA-DR-expressing transgenic NOD/Shi-scid/gammacnull mouse. Int Immunol. 2012; 24(4):243-252.
  • [40]Chen Q, He F, Kwang J, Chan JK, Chen J. GM-CSF and IL-4 stimulate antibody responses in humanized mice by promoting T, B, and dendritic cell maturation. J Immunol. 2012; 189(11):5223-5229.
  • [41]Ding Y, Wilkinson A, Idris A, Fancke B, O'Keeffe M, Khalil D et al.. FLT3-ligand treatment of humanized mice results in the generation of large numbers of CD141+ and CD1c + dendritic cells in vivo. J Immunol. 2014; 192(4):1982-1989.
  • [42]Meixlsperger S, Leung CS, Ramer PC, Pack M, Vanoaica LD, Breton G et al.. CD141+ dendritic cells produce prominent amounts of IFN-alpha after dsRNA recognition and can be targeted via DEC-205 in humanized mice. Blood. 2013; 121(25):5034-5044.
  • [43]Salguero G, Daenthanasanmak A, Munz C, Raykova A, Guzman CA, Riese P et al.. Dendritic cell-mediated immune humanization of mice: implications for allogeneic and xenogeneic stem cell transplantation. J Immunol. 2014; 192(10):4636-4647.
  文献评价指标  
  下载次数:13次 浏览次数:14次