期刊论文详细信息
BMC Cancer
Regulation of Mcl-1 by constitutive activation of NF-kappaB contributes to cell viability in human esophageal squamous cell carcinoma cells
Bangliang Yin1  Jianguo Hu1  Ya Cao3  Yifeng Yang1  Xinmin Zhou1  Fenglei Yu1  Qin Wu1  Sufeng Ouyang1  Jian Wang2  Xiaolong Ma1  Li Xie1  Mingjiu Chen1  Zhenkun Xia1  Yunchang Yuan1  Jinfu Yang2  Haidan Liu2 
[1]Department of Cardiothoracic Surgery, The Second Xiangya Hospital, Central South University, 139 Renmin Road, Changsha, Hunan 410011, China
[2]Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital, Central South University, 139 Renmin Road, Changsha, Hunan 410011, China
[3]Cancer Research Institute, Xiangya School of Medicine, Central South University, 110 Xiangya Road, Changsha, Hunan 410078, China
关键词: Cell viability;    Mcl-1;    NF-κB;    Gene regulation;    Esophageal squamous cell carcinoma;   
Others  :  859059
DOI  :  10.1186/1471-2407-14-98
 received in 2013-05-17, accepted in 2014-02-11,  发布年份 2014
PDF
【 摘 要 】

Background

Esophageal squamous cell carcinoma (ESCC) is one of the most lethal malignancies with a 5-year survival rate less than 15%. Understanding of the molecular mechanisms involved in the pathogenesis of ESCC becomes critical to develop more effective treatments.

Methods

Mcl-1 expression was measured by reverse transcription (RT)-PCR and Western blotting. Human Mcl-1 promoter activity was evaluated by reporter gene assay. The interactions between DNA and transcription factors were confirmed by electrophoretic mobility shift assay (EMSA) in vitro and by chromatin immunoprecipitation (ChIP) assay in cells.

Results

Four human ESCC cell lines, TE-1, Eca109, KYSE150 and KYSE510, are revealed increased levels of Mcl-1 mRNA and protein compare with HaCaT, an immortal non-tumorigenic cell line. Results of reporter gene assays demonstrate that human Mcl-1 promoter activity is decreased by mutation of kappaB binding site, specific NF-kappaB inhibitor Bay11-7082 or dominant inhibitory molecule DNMIkappaBalpha in TE-1 and KYSE150 cell lines. Mcl-1 protein level is also attenuated by Bay11-7082 treatment or co-transfection of DNMIkappaBalpha in TE-1 and KYSE150 cells. EMSA results indicate that NF-kappaB subunits p50 and p65 bind to human Mcl-1-kappaB probe in vitro. ChIP assay further confirm p50 and p65 directly bind to human Mcl-1 promoter in intact cells, by which regulates Mcl-1 expression and contributes to the viability of TE-1 cells.

Conclusions

Our data provided evidence that one of the mechanisms of Mcl-1 expression in human ESCC is regulated by the activation of NF-kappaB signaling. The newly identified mechanism might provide a scientific basis for developing effective approaches to treatment human ESCC.

【 授权许可】

   
2014 Liu et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140724070929495.pdf 1467KB PDF download
112KB Image download
109KB Image download
82KB Image download
89KB Image download
92KB Image download
103KB Image download
【 图 表 】

【 参考文献 】
  • [1]Enzinger PC, Mayer RJ: Esophageal cancer. N Engl J Med 2003, 349:2241-2252.
  • [2]Sieghart W, Losert D, Strommer S, Cejka D, Schmid K, Rasoul-Rockenschaub S, Bodingbauer M, Crevenna R, Monia BP, Peck-Radosavljevic M, Wacheck V: Mcl-1 overexpression in hepatocellular carcinoma: a potential target for antisense therapy. J Hepatol 2006, 44:151-157.
  • [3]Miyamoto Y, Hosotani R, Wada M, Lee JU, Koshiba T, Fujimoto K, Tsuji S, Nakajima S, Doi R, Kato M, et al.: Immunohistochemical analysis of Bcl-2, Bax, Bcl-X, and Mcl-1 expression in pancreatic cancers. Oncology 1999, 56:73-82.
  • [4]Dash R, Richards JE, Su ZZ, Bhutia SK, Azab B, Rahmani M, Dasmahapatra G, Yacoub A, Dent P, Dmitriev IP, et al.: Mechanism by which Mcl-1 regulates cancer-specific apoptosis triggered by mda-7/IL-24, an IL-10-related cytokine. Cancer Res 2010, 70:5034-5045.
  • [5]Schwickart M, Huang X, Lill JR, Liu J, Ferrando R, French DM, Maecker H, O’Rourke K, Bazan F, Eastham-Anderson J, et al.: Deubiquitinase USP9X stabilizes MCL1 and promotes tumour cell survival. Nature 2010, 463:103-107.
  • [6]Keuling AM, Felton KE, Parker AA, Akbari M, Andrew SE, Tron VA: RNA silencing of Mcl-1 enhances ABT-737-mediated apoptosis in melanoma: role for a caspase-8-dependent pathway. PLoS One 2009, 4:e6651.
  • [7]Beroukhim R, Mermel CH, Porter D, Wei G, Raychaudhuri S, Donovan J, Barretina J, Boehm JS, Dobson J, Urashima M, et al.: The landscape of somatic copy-number alteration across human cancers. Nature 2010, 463:899-905.
  • [8]Placzek WJ, Wei J, Kitada S, Zhai D, Reed JC, Pellecchia M: A survey of the anti-apoptotic Bcl-2 subfamily expression in cancer types provides a platform to predict the efficacy of Bcl-2 antagonists in cancer therapy. Cell Death Dis 2010, 1:e40.
  • [9]Akgul C, Turner PC, White MR, Edwards SW: Functional analysis of the human MCL-1 gene. Cell Mol Life Sci 2000, 57:684-691.
  • [10]Wang JM, Chao JR, Chen W, Kuo ML, Yen JJ, Yang-Yen HF: The antiapoptotic gene mcl-1 is up-regulated by the phosphatidylinositol 3-kinase/Akt signaling pathway through a transcription factor complex containing CREB. Mol Cell Biol 1999, 19:6195-6206.
  • [11]Liu H, Ma Y, Cole SM, Zander C, Chen KH, Karras J, Pope RM: Serine phosphorylation of STAT3 is essential for Mcl-1 expression and macrophage survival. Blood 2003, 102:344-352.
  • [12]Epling-Burnette PK, Liu JH, Catlett-Falcone R, Turkson J, Oshiro M, Kothapalli R, Li Y, Wang JM, Yang-Yen HF, Karras J, et al.: Inhibition of STAT3 signaling leads to apoptosis of leukemic large granular lymphocytes and decreased Mcl-1 expression. J Clin Invest 2001, 107:351-362.
  • [13]Townsend KJ, Zhou P, Qian L, Bieszczad CK, Lowrey CH, Yen A, Craig RW: Regulation of MCL1 through a serum response factor/Elk-1-mediated mechanism links expression of a viability-promoting member of the BCL2 family to the induction of hematopoietic cell differentiation. J Biol Chem 1999, 274:1801-1813.
  • [14]Wang JM, Lai MZ, Yang-Yen HF: Interleukin-3 stimulation of mcl-1 gene transcription involves activation of the PU.1 transcription factor through a p38 mitogen-activated protein kinase-dependent pathway. Mol Cell Biol 2003, 23:1896-1909.
  • [15]Meinel FG, Mandl-Weber S, Baumann P, Leban J, Schmidmaier R: The novel, proteasome-independent NF-kappaB inhibitor V1810 induces apoptosis and cell cycle arrest in multiple myeloma and overcomes NF-kappaB-mediated drug resistance. Mol Cancer Ther 2010, 9:300-310.
  • [16]Reuter S, Prasad S, Phromnoi K, Ravindran J, Sung B, Yadav VR, Kannappan R, Chaturvedi MM, Aggarwal BB: Thiocolchicoside exhibits anticancer effects through downregulation of NF-kappaB pathway and its regulated gene products linked to inflammation and cancer. Cancer Prev Res (Phila) 2010, 3:1462-1472.
  • [17]Ricci MS, Kim SH, Ogi K, Plastaras JP, Ling J, Wang W, Jin Z, Liu YY, Dicker DT, Chiao PJ, et al.: Reduction of TRAIL-induced Mcl-1 and cIAP2 by c-Myc or sorafenib sensitizes resistant human cancer cells to TRAIL-induced death. Cancer Cell 2007, 12:66-80.
  • [18]Xu H, Jiang B, Meng L, Ren T, Zeng Y, Wu J, Qu L, Shou C: N-alpha-acetyltransferase 10 protein inhibits apoptosis through RelA/p65-regulated MCL1 expression. Carcinogenesis 2012, 33:1193-1202.
  • [19]Perkins ND: Integrating cell-signalling pathways with NF-kappaB and IKK function. Nat Rev Mol Cell Biol 2007, 8:49-62.
  • [20]Perkins ND: Regulation of NF-kappaB by atypical activators and tumour suppressors. Biochem Soc Trans 2004, 32:936-939.
  • [21]Sethi G, Sung B, Aggarwal BB: Nuclear factor-kappaB activation: from bench to bedside. Exp Biol Med (Maywood) 2008, 233:21-31.
  • [22]Basseres DS, Baldwin AS: Nuclear factor-kappaB and inhibitor of kappaB kinase pathways in oncogenic initiation and progression. Oncogene 2006, 25:6817-6830.
  • [23]Izzo JG, Malhotra U, Wu TT, Ensor J, Luthra R, Lee JH, Swisher SG, Liao Z, Chao KS, Hittelman WN, et al.: Association of activated transcription factor nuclear factor kappab with chemoradiation resistance and poor outcome in esophageal carcinoma. J Clin Oncol 2006, 24:748-754.
  • [24]Tian F, Zang WD, Hou WH, Liu HT, Xue LX: Nuclear factor-kB signaling pathway constitutively activated in esophageal squamous cell carcinoma cell lines and inhibition of growth of cells by small interfering RNA. Acta Biochim Biophys Sin (Shanghai) 2006, 38:318-326.
  • [25]Leu CM, Chang C, Hu C: Epidermal growth factor (EGF) suppresses staurosporine-induced apoptosis by inducing mcl-1 via the mitogen-activated protein kinase pathway. Oncogene 2000, 19:1665-1675.
  • [26]Feng YB, Lin DC, Shi ZZ, Wang XC, Shen XM, Zhang Y, Du XL, Luo ML, Xu X, Han YL, et al.: Overexpression of PLK1 is associated with poor survival by inhibiting apoptosis via enhancement of survivin level in esophageal squamous cell carcinoma. Int J Cancer 2009, 124:578-588.
  • [27]Boukamp P, Petrussevska RT, Breitkreutz D, Hornung J, Markham A, Fusenig NE: Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line. J Cell Biol 1988, 106:761-771.
  • [28]Yang LF, Zhao Y, Zeng L, Gong JP, Cao Y: hTERT/re-caspase-3 system induce apoptosis in hTERT-positive cancer cells. Cancer Biol Ther 2006, 5:1546-1553.
  • [29]Liu HD, Zheng H, Li M, Hu DS, Tang M, Cao Y: Upregulated expression of kappa light chain by Epstein-Barr virus encoded latent membrane protein 1 in nasopharyngeal carcinoma cells via NF-kappaB and AP-1 pathways. Cell Signal 2007, 19:419-427.
  • [30]Liu H, Zheng H, Duan Z, Hu D, Li M, Liu S, Li Z, Deng X, Wang Z, Tang M, et al.: LMP1-augmented kappa intron enhancer activity contributes to upregulation expression of Ig kappa light chain via NF-kappaB and AP-1 pathways in nasopharyngeal carcinoma cells. Mol Cancer 2009, 8:92. BioMed Central Full Text
  • [31]Luo W, Yan G, Li L, Wang Z, Liu H, Zhou S, Liu S, Tang M, Yi W, Dong Z, Cao Y: Epstein-Barr virus latent membrane protein 1 mediates serine 25 phosphorylation and nuclear entry of annexin A2 via PI-PLC-PKCalpha/PKCbeta pathway. Mol Carcinog 2008, 47:934-946.
  • [32]Liu H, Duan Z, Zheng H, Hu D, Li M, Tao Y, Bode AM, Dong Z, Cao Y: EBV-encoded LMP1 upregulates Igkappa 3′enhancer activity and Igkappa expression in nasopharyngeal cancer cells by activating the Ets-1 through ERKs signaling. PLoS One 2012, 7:e32624.
  • [33]Rosato RR, Almenara JA, Kolla SS, Maggio SC, Coe S, Gimenez MS, Dent P, Grant S: Mechanism and functional role of XIAP and Mcl-1 down-regulation in flavopiridol/vorinostat antileukemic interactions. Mol Cancer Ther 2007, 6:692-702.
  • [34]Solanas G, Porta-de-la-Riva M, Agusti C, Casagolda D, Sanchez-Aguilera F, Larriba MJ, Pons F, Peiro S, Escriva M, Munoz A, et al.: E-cadherin controls beta-catenin and NF-kappaB transcriptional activity in mesenchymal gene expression. J Cell Sci 2008, 121:2224-2234.
  • [35]Wang X, Sonenshein GE: Induction of the RelB NF-kappaB subunit by the cytomegalovirus IE1 protein is mediated via Jun kinase and c-Jun/Fra-2 AP-1 complexes. J Virol 2005, 79:95-105.
  • [36]Sohda M, Mochida Y, Kato H, Miyazaki T, Nakajima M, Fukuchi M, Manda R, Fukai Y, Masuda N, Ono M, et al.: Overexpression of Cap43 is associated with malignant status of esophageal cancer. Anticancer Res 2009, 29:965-970.
  • [37]Yan S, Zhou C, Zhang W, Zhang G, Zhao X, Yang S, Wang Y, Lu N, Zhu H, Xu N: beta-Catenin/TCF pathway upregulates STAT3 expression in human esophageal squamous cell carcinoma. Cancer Lett 2008, 271:85-97.
  • [38]Li Y, Reddy MA, Miao F, Shanmugam N, Yee JK, Hawkins D, Ren B, Natarajan R: Role of the histone H3 lysine 4 methyltransferase, SET7/9, in the regulation of NF-kappaB-dependent inflammatory genes. Relevance to diabetes and inflammation. J Biol Chem 2008, 283:26771-26781.
  • [39]Huang C, Bi E, Hu Y, Deng W, Tian Z, Dong C, Hu Y, Sun B: A novel NF-kappaB binding site controls human granzyme B gene transcription. J Immunol 2006, 176:4173-4181.
  • [40]Beverly LJ, Capobianco AJ: Targeting promiscuous signaling pathways in cancer: another Notch in the bedpost. Trends Mol Med 2004, 10:591-598.
  • [41]Zhong Q, Gao W, Du F, Wang X: Mule/ARF-BP1, a BH3-only E3 ubiquitin ligase, catalyzes the polyubiquitination of Mcl-1 and regulates apoptosis. Cell 2005, 121:1085-1095.
  • [42]Ding Q, He X, Hsu JM, Xia W, Chen CT, Li LY, Lee DF, Liu JC, Zhong Q, Wang X, Hung MC: Degradation of Mcl-1 by beta-TrCP mediates glycogen synthase kinase 3-induced tumor suppression and chemosensitization. Mol Cell Biol 2007, 27:4006-4017.
  • [43]Wertz IE, Kusam S, Lam C, Okamoto T, Sandoval W, Anderson DJ, Helgason E, Ernst JA, Eby M, Liu J, et al.: Sensitivity to antitubulin chemotherapeutics is regulated by MCL1 and FBW7. Nature 2011, 471:110-114.
  • [44]Mott JL, Kobayashi S, Bronk SF, Gores GJ: mir-29 regulates Mcl-1 protein expression and apoptosis. Oncogene 2007, 26:6133-6140.
  • [45]Opel D, Naumann I, Schneider M, Bertele D, Debatin KM, Fulda S: Targeting aberrant PI3K/Akt activation by PI103 restores sensitivity to TRAIL-induced apoptosis in neuroblastoma. Clin Cancer Res 2011, 17:3233-3247.
  • [46]Wang YF, Jiang CC, Kiejda KA, Gillespie S, Zhang XD, Hersey P: Apoptosis induction in human melanoma cells by inhibition of MEK is caspase-independent and mediated by the Bcl-2 family members PUMA, Bim, and Mcl-1. Clin Cancer Res 2007, 13:4934-4942.
  • [47]Udalova IA, Mott R, Field D, Kwiatkowski D: Quantitative prediction of NF-kappa B DNA-protein interactions. Proc Natl Acad Sci U S A 2002, 99:8167-8172.
  • [48]Hoffmann A, Leung TH, Baltimore D: Genetic analysis of NF-kappaB/Rel transcription factors defines functional specificities. Embo J 2003, 22:5530-5539.
  • [49]Natoli G, Saccani S, Bosisio D, Marazzi I: Interactions of NF-kappaB with chromatin: the art of being at the right place at the right time. Nat Immunol 2005, 6:439-445.
  • [50]Saccani S, Pantano S, Natoli G: Modulation of NF-kappaB activity by exchange of dimers. Mol Cell 2003, 11:1563-1574.
  • [51]Kunsch C, Rosen CA: NF-kappa B subunit-specific regulation of the interleukin-8 promoter. Mol Cell Biol 1993, 13:6137-6146.
  • [52]Moshynska O, Sankaran K, Pahwa P, Saxena A: Prognostic significance of a short sequence insertion in the MCL-1 promoter in chronic lymphocytic leukemia. J Natl Cancer Inst 2004, 96:673-682.
  文献评价指标  
  下载次数:73次 浏览次数:21次