期刊论文详细信息
BMC Microbiology
Selective photoinactivation of Candida albicans in the non-vertebrate host infection model Galleria mellonella
Eleftherios Mylonakis4  Michael R Hamblin3  George P Tegos3  Antonio OC Jorge6  Beth B Fuchs4  Yan Wang1  Juliana C Junqueira6  Xiaojiang Tan2  Caetano P Sabino7  José Chibebe Junior5 
[1] School of Pharmacy, Second Military Medical University, Shanghai 200433, China;Huiqiao Department, Nanfang Hospital, Southern Medical University, Guangzhou 510515, People’s Republic of China;Department of Dermatology, Harvard Medical School, Boston, MA 02114, USA;Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114, USA;Department of Restorative Dentistry, Faculty of Pindamonhangaba, Pindamonhangaba, SP 12422970, Brazil;Department of Biosciences and Oral Diagnosis, Univ Estadual Paulista/UNESP, São José dos Campos, SP 12245000, Brazil;Center for Lasers and Applications, Nuclear and Energy Research Institute, São Paulo, SP 05508000, Brazil
关键词: Galleria mellonella;    Photodynamic therapy;    Candida albicans;   
Others  :  1143003
DOI  :  10.1186/1471-2180-13-217
 received in 2013-04-18, accepted in 2013-09-17,  发布年份 2013
PDF
【 摘 要 】

Background

Candida spp. are recognized as a primary agent of severe fungal infection in immunocompromised patients, and are the fourth most common cause of bloodstream infections. Our study explores treatment with photodynamic therapy (PDT) as an innovative antimicrobial technology that employs a nontoxic dye, termed a photosensitizer (PS), followed by irradiation with harmless visible light. After photoactivation, the PS produces either singlet oxygen or other reactive oxygen species (ROS) that primarily react with the pathogen cell wall, promoting permeabilization of the membrane and cell death. The emergence of antifungal-resistant Candida strains has motivated the study of antimicrobial PDT (aPDT) as an alternative treatment of these infections. We employed the invertebrate wax moth Galleria mellonella as an in vivo model to study the effects of aPDT against C. albicans infection. The effects of aPDT combined with conventional antifungal drugs were also evaluated in G. mellonella.

Results

We verified that methylene blue-mediated aPDT prolonged the survival of C. albicans infected G. mellonella larvae. The fungal burden of G. mellonella hemolymph was reduced after aPDT in infected larvae. A fluconazole-resistant C. albicans strain was used to test the combination of aPDT and fluconazole. Administration of fluconazole either before or after exposing the larvae to aPDT significantly prolonged the survival of the larvae compared to either treatment alone.

Conclusions

G. mellonella is a useful in vivo model to evaluate aPDT as a treatment regimen for Candida infections. The data suggests that combined aPDT and antifungal therapy could be an alternative approach to antifungal-resistant Candida strains.

【 授权许可】

   
2013 Chibebe Junior et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150328211225149.pdf 785KB PDF download
Figure 4. 69KB Image download
Figure 3. 85KB Image download
Figure 2. 63KB Image download
Figure 1. 45KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Chabrier-Rosello Y, Giesselman BR, De Jesus-Andino FJ, Foster TH, Mitra S, Haidaris CG: Inhibition of electron transport chain assembly and function promotes photodynamic killing of Candida. J Photochem Photobiol B 2010, 99:117-125.
  • [2]Thein ZM, Seneviratne CJ, Samaranayake YH, Samaranayake LP: Community lifestyle of Candida in mixed biofilms: a mini review. Mycoses 2009, 52:467-475.
  • [3]Junqueira JC, Fuchs BB, Muhammed M, Coleman JJ, Suleiman JM, Vilela SF, Costa AC, Rasteiro VM, Jorge AO, Mylonakis E: Oral Candida albicans isolates from HIV-positive individuals have similar in vitro biofilm-forming ability and pathogenicity as invasive Candida isolates. BMC Microbiol 2011, 11:247. BioMed Central Full Text
  • [4]Cowen LE, Singh SD, Kohler JR, Collins C, Zaas AK, Schell WA, Aziz H, Mylonakis E, Perfect JR, Whitesell L, et al.: Harnessing Hsp90 function as a powerful, broadly effective therapeutic strategy for fungal infectious disease. Proc Natl Acad Sci USA 2009, 106:2818-2823.
  • [5]Douglas LJ: Candida biofilms and their role in infection. Trends Microbiol 2003, 11:30-36.
  • [6]Dai T, Fuchs BB, Coleman JJ, Prates RA, Astrakas C, St Denis TG, Ribeiro MS, Mylonakis E, Hamblin MR, Tegos GP: Concepts and principles of photodynamic therapy as an alternative antifungal discovery platform. Front Microbiol 2012, 3:120.
  • [7]Niimi M, Firth NA, Cannon RD: Antifungal drug resistance of oral fungi. Odontology 2010, 98:15-25.
  • [8]Coleman JJ, Okoli I, Tegos GP, Holson EB, Wagner FF, Hamblin MR, Mylonakis E: Characterization of plant-derived saponin natural products against Candida albicans. ACS Chem Biol 2010, 5:321-332.
  • [9]Fuchs BB, Eby J, Nobile CJ, El Khoury JB, Mitchell AP, Mylonakis E: Role of filamentation in Galleria mellonella killing by Candida albicans. Microbes Infect 2010, 12:488-496.
  • [10]Zhang X, De Micheli M, Coleman ST, Sanglard D, Moye-Rowley WS: Analysis of the oxidative stress regulation of the Candida albicans transcription factor, Cap1p. Mol Microbiol 2000, 36:618-629.
  • [11]Williams DW, Kuriyama T, Silva S, Malic S, Lewis MA: Candida biofilms and oral candidosis: treatment and prevention. Periodontol 2000 2011, 55:250-265.
  • [12]Kusch H, Engelmann S, Albrecht D, Morschhauser J, Hecker M: Proteomic analysis of the oxidative stress response in Candida albicans. Proteomics 2007, 7:686-697.
  • [13]Wang Y, Cao YY, Jia XM, Cao YB, Gao PH, Fu XP, Ying K, Chen WS, Jiang YY: Cap1p is involved in multiple pathways of oxidative stress response in Candida albicans. Free Radic Biol Med 2006, 40:1201-1209.
  • [14]Alonso-Monge R, Navarro-Garcia F, Roman E, Negredo AI, Eisman B, Nombela C, Pla J: The Hog1 mitogen-activated protein kinase is essential in the oxidative stress response and chlamydospore formation in Candida albicans. Eukaryot Cell 2003, 2:351-361.
  • [15]Chabrier-Rosello Y, Foster TH, Mitra S, Haidaris CG: Respiratory deficiency enhances the sensitivity of the pathogenic fungus Candida to photodynamic treatment. Photochem Photobiol 2008, 84:1141-1148.
  • [16]Fuchs BB, Tegos GP, Hamblin MR, Mylonakis E: Susceptibility of Cryptococcus neoformans to photodynamic inactivation is associated with cell wall integrity. Antimicrob Agents Chemother 2007, 51:2929-2936.
  • [17]Denis TGS, Dai T, Izikson L, Astrakas C, Anderson RR, Hamblin MR, Tegos GP: Antimicrobial photoinactivation as an evolving and emerging discovery strategy against infectious disease. Virulence 2011, 2:509-520.
  • [18]Desalermos A, Fuchs BB, Mylonakis E: Selecting an invertebrate model host for the study of fungal pathogenesis. PLoS Pathog 2012, 8:e1002451.
  • [19]Chibebe Junior J, Fuchs BB, Sabino CP, Junqueira JC, Jorge AOC, Ribeiro MS, Gilmore MS, Rice LB, Tegos GP, Hamblin MR, Mylonakis E: Photodynamic and antibiotic therapy impair the pathogenesis of Enterococcus faecium in a whole animal insect model. Plos One 2013, 8:e55926.
  • [20]Gillum AM, Tsay EY, Kirsch DR: Isolation of the Candida albicans gene for orotidine-5-phosphate decarboxylase by complementation of S. cerevisiae Ura3 and E. coli PyrF mutations. Mol Gen Genet 1984, 198:179-182.
  • [21]Tanaka M, Mroz P, Daí T, Huang L, Morimoto Y, Kinoshita M, Yoshirara Y, Nemoto K, Shinomiya N, Seki S, Hamblin MR: Photodynamic therapy can induce a protective innate immune response against murine bacterial arthritis via neutrophil accumulation. Plos One 2012, 7:e39823.
  • [22]Dougherty TJ, Gomer CJ, Henderson BW, Jori G, Kessel D, Korbelik M, Moan J, Peng Q: Photodynamic therapy. J Natl Cancer Inst 1998, 90:889-905.
  • [23]Prates RA, Kato IT, Ribeiro MS, Tegos GT, Hamblin MR: Influence of multidrug efflux systems on methylene blue-mediated photodynamic inactivation of Candida albicans. J Antimicrob Chemother 2011, 66:1525-1532.
  • [24]Rautemaa R, Ramage G: Oral candidosis–clinical challenges of a biofilm disease. Crit Rev Microbiol 2011, 37(4):328-336.
  • [25]Giroldo LM, Felipe MP, Oliveira MA, Munin E, Alves LP, Costa MS: Photodynamic antimicrobial chemotherapy (PACT) with methylene blue increases membrane permeability in Candida albicans. Lasers Med Sci 2009, 24:109-112.
  • [26]Snell SB, Foster TH, Haidaris CG: Miconazole induces fungistasis and increases killing of Candida albicans subjected to photodynamic therapy (dagger). Photochem Photobiol 2011, 88:596-603.
  • [27]Aperis G, Fuchs BB, Anderson CA, Warner JE, Calderwood SB, Mylonakis E: Galleria mellonella as a model host to study infection by the Francisella tularensis live vaccine strain. Microbes Infect 2007, 9:729-734.
  • [28]Olsen RJ, Watkins ME, Cantu CC, Beres SB, Musser JM: Virulence of serotype M3 Group A Streptococcus strains in wax worms (Galleria mellonella larvae). Virulence 2011, 2:111-119.
  • [29]Peleg AY, Jara S, Monga D, Eliopoulos GM, Moellering RC Jr, Mylonakis E: Galleria mellonella as a model system to study Acinetobacter baumannii pathogenesis and therapeutics. Antimicrob Agents Chemother 2009, 53:2605-2609.
  • [30]Fuchs BB, Mylonakis E: Using non-mammalian hosts to study fungal virulence and host defense. Curr Opin Microbiol 2006, 9:346-351.
  • [31]Abranches J, Miller JH, Martinez AR, Simpson-Haidaris PJ, Burne RA, Lemos JA: The collagen-binding protein Cnm is required for Streptococcus mutans adherence to and intracellular invasion of human coronary artery endothelial cells. Infect Immun 2011, 79:2277-2284.
  • [32]Champion OL, Cooper IA, James SL, Ford D, Karlyshev A, Wren BW, Duffield M, Oyston PC, Titball RW: Galleria mellonella as an alternative infection model for Yersinia pseudotuberculosis. Microbiology 2009, 155:1516-1522.
  • [33]Desbois AP, Coote PJ: Wax moth larva (Galleria mellonella): an in vivo model for assessing the efficacy of antistaphylococcal agents. J Antimicrob Chemother 2011, 66:1785-1790.
  • [34]Gaddy JA, Arivett BA, McConnell MJ, Lopez-Rojas R, Pachon J, Actis LA: Role of Acinetobactin-mediated iron acquisition functions in the interaction of Acinetobacter baumannii strain ATCC 19606T with human lung epithelial cells, Galleria mellonella caterpillars, and mice. Infect Immun 2012, 80:1015-1024.
  • [35]Jander G, Rahme LG, Ausubel FM: Positive correlation between virulence of Pseudomonas aeruginosa mutants in mice and insects. J Bacteriol 2000, 182:3843-3845.
  • [36]Lebreton F, Le Bras F, Reffuveille F, Ladjouzi R, Giard JC, Leclercq R, Cattoir V: Galleria mellonella as a model for studying Enterococcus faecium host persistence. J Mol Microbiol Biotechnol 2011, 21:191-196.
  • [37]Miyata S, Casey M, Frank DW, Ausubel FM, Drenkard E: Use of the Galleria mellonella caterpillar as a model host to study the role of the type III secretion system in Pseudomonas aeruginosa pathogenesis. Infect Immun 2003, 71:2404-2413.
  • [38]Mylonakis E, Moreno R, El Khoury JB, Idnurm A, Heitman J, Calderwood SB, Ausubel FM, Diener A: Galleria mellonella as a model system to study Cryptococcus neoformans pathogenesis. Infect Immun 2005, 73:3842-3850.
  • [39]Yasmin A, Kenny JG, Shankar J, Darby AC, Hall N, Edwards C, Horsburgh MJ: Comparative genomics and transduction potential of Enterococcus faecalis temperate bacteriophages. J Bacteriol 2010, 192:1122-1130.
  • [40]Michaux C, Sanguinetti M, Reffuveille F, Auffray Y, Posteraro B, Gilmore MS, Hartke A, Giard JC: SlyA is a transcriptional regulator involved in the virulence of Enterococcus faecalis. Infect Immun 2011, 79:2638-2645.
  • [41]Dovigo LN, Pavarina AC, Mima EG, Giampaolo ET, Vergani CE, Bagnato VS: Fungicidal effect of photodynamic therapy against fluconazole-resistant Candida albicans and Candida glabrata. Mycoses 2011, 54:123-130.
  • [42]Arana DM, Nombel C, Pla J: Fluconazole at subinhibitory concentrations induces the oxidative- and nitrosative-response genes TRR1, GRE2 and YHB1, and enhances the resistance of Candida albicans to phagocytes. J Antimicrob Chemother 2010, 65:54-62.
  • [43]Kato IT, Prates RA, Sabino CP, Fuchs BB, Tegos GP, Mylonakis E, Hamblin MR, Ribeiro MS: Antimicrobial photodynamic inactivation inhibits Candida albicans virulence factors and reduces in vivo pathogenicity. Antimicrob Agents Chemother 2012, 57:445-451.
  • [44]Costa AC, Campos-Rasteiro VM, Da Silva Hashimoto ES, Araujo CF, Pereira CA, Junqueira JC, Jorge AO: Effect of erythrosine- and LED-mediated photodynamic therapy on buccal candidiasis infection of immunosuppressed mice and Candida albicans adherence to buccal epithelial cells. Oral Surg Oral Med Oral Pathol Oral Radiol 2012, 114:67-74.
  • [45]Dai T, Arce VJB, Tegos GP, Hamblin MR: Blue dye and red light, a dynamic combination for prophylaxis and treatment of cutaneous Candida albicans infections in mice. Antimicrob Agents Chemother 2011, 55:5710-5717.
  • [46]Di Poto A, Sbarra MS, Provenza G, Visai L, Speziale P: The effect of photodynamic treatment combined with antibiotic action or host defence mechanisms on Staphylococcus aureus biofilms. Biomaterials 2009, 30:3158-3166.
  • [47]Fallon JP, Troy N, Kavanagh K: Pre-exposure of Galleria mellonella larvae to different doses of Aspergillus fumigatus conidia causes differential activation of cellular and humoral immune responses. Virulence 2011, 2:413-421.
  • [48]Huang YY, Tanaka M, Vecchio D, Garcia-Diaz M, Chang J, Morimoto Y, Hamblin MR: Photodynamic therapy induces an immune response against a bacterial pathogen. Expert Rev Clin Immunol 2012, 8:479-494.
  文献评价指标  
  下载次数:31次 浏览次数:33次