期刊论文详细信息
BMC Microbiology
Transcriptome profiling of Bacillus subtilis OKB105 in response to rice seedlings
Xuewen Gao1  Yongli Xie1  Haoyu Zang1  Lina Chen1  Huijun Wu1  Shanshan Xie1 
[1]Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Weigang No.1, Nanjing 210095, People’s Republic of China
关键词: Functional annotation;    Microarray;    Transcriptomics;    Plant-microbe interactions;    Oryza sativa;    Bacillus subtilis;   
Others  :  1137441
DOI  :  10.1186/s12866-015-0353-4
 received in 2014-03-31, accepted in 2015-01-19,  发布年份 2015
PDF
【 摘 要 】

Background

Plant growth-promoting rhizobacteria (PGPR) are soil beneficial microorganisms that colonize plant roots for nutritional purposes and accordingly benefit plants by increasing plant growth or reducing disease. However, the mechanisms and pathways involved in the interactions between PGPR and plants remain unclear. In order to better understand these complex plant-PGPR interactions, changes in the transcriptome of the typical PGPR Bacillus subtilis in response to rice seedlings were analyzed.

Results

Microarray technology was used to study the global transcriptionl response of B. subtilis OKB105 to rice seedlings after an interaction period of 2 h. A total of 176 genes representing 3.8% of the B. subtilis strain OKB105 transcriptome showed significantly altered expression levels in response to rice seedlings. Among these, 52 were upregulated, the majority of which are involved in metabolism and transport of nutrients, and stress responses, including araA, ywkA, yfls, mtlA, ydgG et al. The 124 genes that were downregulated included cheV, fliL, spmA and tua, and these are involved in chemotaxis, motility, sporulation and teichuronic acid biosynthesis, respectively.

Conclusions

We present a transcriptome analysis of the bacteria Bacillus subtilis OKB105 in response to rice seedings. Many of the 176 differentially expressed genes are likely to be involved in the interaction between Gram-positive bacteria and plants.

【 授权许可】

   
2015 Xie et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150317073300514.pdf 2433KB PDF download
Figure 6. 44KB Image download
Figure 5. 15KB Image download
Figure 4. 106KB Image download
Figure 3. 82KB Image download
Figure 2. 15KB Image download
Figure 1. 32KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Chao W-L, Li R-K, Chang W-T: Effect of root agglutinin on microbial activities in the rhizosphere. Appl Environ Microbiol 1988, 54(7):1838-1841.
  • [2]De Weger LA, Van der Vlugt C, Wijfjes A, Bakker P, Schippers B, Lugtenberg B: Flagella of a plant-growth-stimulating Pseudomonas fluorescens strain are required for colonization of potato roots. J Bacteriol 1987, 169(6):2769-2773.
  • [3]Schippers B, Bakker AW, Bakker PAH: Interactions of deleterious and beneficial rhizosphere microorganisms and the effect of cropping practices. Annu Rev Phytopathol 1987, 25(1):339-358.
  • [4]Vesper SJ, Malik NS, Bauer WD: Transposon mutants of Bradyrhizobium japonicum altered in attachment to host roots. Appl Environ Microbiol 1987, 53(8):1959-1961.
  • [5]Schroth LJ: Influence of bacteria sources of indol-3-acetic acid on root elongation of sugar beet. Phytopathology 1986, 76:386-389.
  • [6]Timmusk S, Nicander B, Granhall U, Tillberg E: Cytokinin production by Paenibacillus polymyxa. Soil Biol Biochem 1999, 31(13):1847-1852.
  • [7]Ramos‐Solano B, Probanza A, Mehouachi JR, Tadeo F, Talon M: The plant‐growth‐promoting rhizobacteria Bacillus pumilus and Bacillus licheniformis produce high amounts of physiologically active gibberellins. Physiologia Plantarum 2001, 111(2):206-211.
  • [8]Lugtenberg B, Kamilova F: Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 2009, 63:541-556.
  • [9]Pliego C, De Weert S, Lamers G, De Vicente A, Bloemberg G, Cazorla FM, et al.: Two similar enhanced root‐colonizing Pseudomonas strains differ largely in their colonization strategies of avocado roots and Rosellinia necatrix hyphae. Environ Microbiol 2008, 10(12):3295-3304.
  • [10]Van Peer R, Niemann G, Schippers B: Induced resistance and phytoalexin accumulation in biological control of Fusarium wilt of carnation by Pseudomonas sp. strain WCS 417 r. Phytopathology 1991, 81(7):728-734.
  • [11]Wang Y, Ohara Y, Nakayashiki H, Tosa Y, Mayama S: Microarray analysis of the gene expression profile induced by the endophytic plant growth-promoting rhizobacteria, Pseudomonas fluorescens FPT9601-T5 in Arabidopsis. Mol Plant-Microbe Interact 2005, 18(5):385-396.
  • [12]Wang W, Chen LN, Wu H, Zang H, Gao S, Yang Y, Xie S, Gao X: Comparative proteomic analysis of rice seedlings in response to inoculation with Bacillus cereus. Letters in applied microbiology 2013.
  • [13]Kandasamy S, Loganathan K, Muthuraj R, Duraisamy S, Seetharaman S, Thiruvengadam R, et al.: Understanding the molecular basis of plant growth promotional effect of Pseudomonas fluorescens on rice through protein profiling. Proteome Sci 2009, 7(1):47. BioMed Central Full Text
  • [14]Mark GL, Dow JM, Kiely PD, Higgins H, Haynes J, Baysse C, et al.: Transcriptome profiling of bacterial responses to root exudates identifies genes involved in microbe-plant interactions. Proc Natl Acad Sci U S A 2005, 102(48):17454-17459.
  • [15]Matilla MA, Espinosa-Urgel M, Rodríguez-Herva JJ, Ramos JL, Ramos-González MI: Genomic analysis reveals the major driving forces of bacterial life in the rhizosphere. Genome Biol 2007, 8(9):R179. BioMed Central Full Text
  • [16]Fan B, Carvalhais LC, Becker A, Fedoseyenko D, von Wirén N, Borriss R: Transcriptomic profiling of Bacillus amyloliquefaciens FZB42 in response to maize root exudates. BMC Microbiol 2012, 12(1):116. BioMed Central Full Text
  • [17]Nakano MM, Marahiel M, Zuber P: Identification of a genetic locus required for biosynthesis of the lipopeptide antibiotic surfactin in Bacillus subtilis. J Bacteriol 1988, 170(12):5662-5668.
  • [18]Wang S, Wu H, Qiao J, Ma L, Liu J, Xia Y, et al.: Molecular mechanism of plant growth promotion and induced systemic resistance to tobacco mosaic virus by Bacillus spp. J Microbiol Biotechnol 2009, 19(10):1250-1258.
  • [19]Xia Y, Xie S, Ma X, Wu H, Wang X, Gao X: The purL gene of Bacillus subtilis is associated with nematicidal activity. FEMS Microbiol Lett 2011, 322(2):99-107.
  • [20]Barbour W, Hattermann D, Stacey G: Chemotaxis of Bradyrhizobium japonicum to soybean exudates. Appl Environ Microbiol 1991, 57(9):2635-2639.
  • [21]Baudoin E, Benizri E, Guckert A: Impact of artificial root exudates on the bacterial community structure in bulk soil and maize rhizosphere. Soil Biol Biochem 2003, 35(9):1183-1192.
  • [22]Rudrappa T, Czymmek KJ, Paré PW, Bais HP: Root-secreted malic acid recruits beneficial soil bacteria. Plant Physiol 2008, 148(3):1547-1556.
  • [23]Bacilio-Jiménez M, Aguilar-Flores S, Ventura-Zapata E, Pérez-Campos E, Bouquelet S, Zenteno E: Chemical characterization of root exudates from rice (Oryza sativa) and their effects on the chemotactic response of endophytic bacteria. Plant Soil 2003, 249(2):271-277.
  • [24]Kirk G, Santos E, Findenegg G: Phosphate solubilization by organic anion excretion from rice (Oryza sativa L.) growing in aerobic soil. Plant Soil 1999, 211(1):11-18.
  • [25]Yoshida K-i, Kobayashi K, Miwa Y, Kang C-M, Matsunaga M, Yamaguchi H, et al.: Combined transcriptome and proteome analysis as a powerful approach to study genes under glucose repression in Bacillus subtilis. Nucleic Acids Res 2001, 29(3):683-692.
  • [26]Alekshun MN, Levy SB: Regulation of chromosomally mediated multiple antibiotic resistance: the mar regulon. Antimicrob Agents Chemother 1997, 41(10):2067.
  • [27]Aravind L, Anantharaman V, Balaji S, Babu MM, Iyer LM: The many faces of the helix‐turn‐helix domain: Transcription regulation and beyond. FEMS Microbiol Rev 2005, 29(2):231-262.
  • [28]Miller PF, Sulavik MC: Overlaps and parallels in the regulation of intrinsic multiple‐antibiotic resistance in Escherichia coli. Mol Microbiol 1996, 21(3):441-448.
  • [29]Bouillant M, Jacoud C, Zanella I, Favre-Bonvin J, Bally R: Identification of 5-(12-heptadecenyl)-resorcinol in rice root exudates. Phytochemistry 1994, 35(3):768-771.
  • [30]Kato-Noguchi H: Allelopathic substance in rice root exudates: Rediscovery of momilactone B as an allelochemical. J Plant Physiol 2004, 161(3):271-276.
  • [31]Bashan Y, Holguin G: Azospirillum-plant relationships: environmental and physiological advances (1990-1996). Can J Microbiol 1997, 43(2):103-121.
  • [32]Ongena M, Jacques P: Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol 2008, 16(3):115-125.
  • [33]Raaijmakers JM, de Bruijn I, de Kock MJ: Cyclic lipopeptide production by plant-associated Pseudomonas spp.: diversity, activity, biosynthesis, and regulation. Mol Plant Microbe Interact 2006, 19(7):699-710.
  • [34]Daniels R, Vanderleyden J, Michiels J: Quorum sensing and swarming migration in bacteria. FEMS Microbiol Rev 2004, 28(3):261-289.
  • [35]Capdevila S, Martinez-Granero FM, Sanchez-Contreras M, Rivilla R, Martin M: Analysis of Pseudomonas fluorescens F113 genes implicated in flagellar filament synthesis and their role in competitive root colonization. Microbiology 2004, 150(Pt 11):3889-3897.
  • [36]Kinsinger RF, Shirk MC, Fall R: Rapid surface motility in Bacillus subtilis is dependent on extracellular surfactin and potassium ion. J Bacteriol 2003, 185(18):5627-5631.
  • [37]Archibald A, Hancock I, Harwood C: Cell wall structure, synthesis, and turnover. Bacillus subtilis and other gram-positive bacteria American Society for Microbiology, Washington, DC 1993:381-410.
  • [38]SASAKI Y, ARAKI Y, ITO E: Structure of teichoic‐acid—glycopeptide complexes from cell walls of bacillus cereus AHU 1030. Eur J Biochem 1983, 132(1):207-213.
  • [39]Shibaev VN, Duckworth M, Archibald AR, Baddiley J: The structure of a polymer containing galactosamine from walls of Bacillus subtilis 168. Biochem J 1973, 135(2):383.
  • [40]Miwa Y, Fujita Y: Involvement of two distinct catabolite-responsive elements in catabolite repression of the Bacillus subtilis myo-inositol (iol) operon. J Bacteriol 2001, 183(20):5877-5884.
  • [41]Arkhipova T, Veselov S, Melentiev A, Martynenko E, Kudoyarova G: Ability of bacterium Bacillus subtilis to produce cytokinins and to influence the growth and endogenous hormone content of lettuce plants. Plant Soil 2005, 272(1–2):201-209.
  • [42]Idris EE, Iglesias DJ, Talon M, Borriss R: Tryptophan-dependent production of indole-3-acetic acid (IAA) affects level of plant growth promotion by Bacillus amyloliquefaciens FZB42. Mol Plant-Microbe Interact 2007, 20(6):619-626.
  • [43]Lee J-M, Zhang S, Saha S, Santa Anna S, Jiang C, Perkins J: RNA expression analysis using an antisense bacillus subtilis genome array. J Bacteriol 2001, 183(24):7371-7380.
  文献评价指标  
  下载次数:47次 浏览次数:35次