期刊论文详细信息
BMC Genomics
Strand-specific RNA sequencing in Plasmodium falciparum malaria identifies developmentally regulated long non-coding RNA and circular RNA
Pardis C Sabeti4  John L Rinn1  Dyann Wirth5  Ulf Ribacke3  Jill C Broadbent4  Kate M Broadbent2 
[1] Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA;Broad Institute, Cambridge, Massachusetts, USA;Department of Cell and Molecular Biology, BMC, Uppsala University, Uppsala, Sweden;Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA;Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, USA
关键词: PfGDV1;    Extreme genome;    Gene regulation;    Transcriptome;    Plasmodium;    Malaria;    microRNA;    circRNA;    Antisense RNA;    lncRNA;    Non-coding RNA;    RNA sequencing;   
Others  :  1213741
DOI  :  10.1186/s12864-015-1603-4
实施日期:2015-05-01,发布日期:2015-06-13
PDF
【 摘 要 】

Background

The human malaria parasite Plasmodium falciparum has a complex and multi-stage life cycle that requires extensive and precise gene regulation to allow invasion and hijacking of host cells, transmission, and immune escape. To date, the regulatory elements orchestrating these critical parasite processes remain largely unknown. Yet it is becoming increasingly clear that long non-coding RNAs (lncRNAs) could represent a missing regulatory layer across a broad range of organisms.

Results

To investigate the regulatory capacity of lncRNA in P. falciparum, we harvested fifteen samples from two time-courses. Our sample set profiled 56 h of P. falciparum blood stage development. We then developed and validated strand-specific, non-polyA-selected RNA sequencing methods, and pursued the first assembly of P. falciparum strand-specific transcript structures from RNA sequencing data. This approach enabled the annotation of over one thousand lncRNA transcript models and their comprehensive global analysis: coding prediction, periodicity, stage-specificity, correlation, GC content, length, location relative to annotated transcripts, and splicing. We validated the complete splicing structure of three lncRNAs with compelling properties. Non-polyA-selected deep sequencing also enabled the prediction of hundreds of intriguing P. falciparum circular RNAs, six of which we validated experimentally.

Conclusions

We found that a subset of lncRNAs, including all subtelomeric lncRNAs, strongly peaked in expression during invasion. By contrast, antisense transcript levels significantly dropped during invasion. As compared to neighboring mRNAs, the expression of antisense-sense pairs was significantly anti-correlated during blood stage development, indicating transcriptional interference. We also validated that P. falciparum produces circRNAs, which is notable given the lack of RNA interference in the organism, and discovered that a highly expressed, five-exon antisense RNA is poised to regulate P. falciparum gametocyte development 1 (PfGDV1), a gene required for early sexual commitment events.

【 授权许可】

   
2015 Broadbent et al.

【 预 览 】
附件列表
Files Size Format View
20150615025801383.pdf 2560KB PDF download
Fig. 5. 128KB Image download
Fig. 4. 173KB Image download
Fig. 3. 86KB Image download
Fig. 2. 25KB Image download
Fig. 1. 93KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

【 参考文献 】
  • [1]Ariey F, Witkowski B, Amaratunga C, Beghain J, Langlois AC, Khim N, Kim S, Duru V, Bouchier C, Ma L et al.. A molecular marker of artemisinin-resistant Plasmodium falciparum malaria. Nature. 2014; 505(7481):50-5.
  • [2]Males S, Gaye O, Garcia A. Long-term asymptomatic carriage of Plasmodium falciparum protects from malaria attacks: a prospective study among Senegalese children. Clin Infect Dis. 2008; 46(4):516-22.
  • [3]Mita T, Tanabe K. Evolution of Plasmodium falciparum drug resistance: implications for the development and containment of artemisinin resistance. Jpn J Infect Dis. 2012; 65(6):465-75.
  • [4]Murray CJ, Rosenfeld LC, Lim SS, Andrews KG, Foreman KJ, Haring D, Fullman N, Naghavi M, Lozano R, Lopez AD. Global malaria mortality between 1980 and 2010: a systematic analysis. Lancet. 2012; 379(9814):413-31.
  • [5]Goldberg DE, Cowman AF. Moving in and renovating: exporting proteins from Plasmodium into host erythrocytes. Nat Rev Microbiol. 2010; 8(9):617-21.
  • [6]Maier AG, Cooke BM, Cowman AF, Tilley L. Malaria parasite proteins that remodel the host erythrocyte. Nat Rev Microbiol. 2009; 7(5):341-54.
  • [7]Bannister LH, Hopkins JM, Fowler RE, Krishna S, Mitchell GH. A brief illustrated guide to the ultrastructure of Plasmodium falciparum asexual blood stages. Parasitol Today. 2000; 16(10):427-33.
  • [8]Miller LH, Baruch DI, Marsh K, Doumbo OK. The pathogenic basis of malaria. Nature. 2002; 415(6872):673-9.
  • [9]Baker DA. Malaria gametocytogenesis. Mol Biochem Parasitol. 2010; 172(2):57-65.
  • [10]Trager W, Jensen JB. Human Malaria Parasites in Continuous Culture. Science. 1976; 193(4254):673-5.
  • [11]Burrows JN, Burlot E, Campo B, Cherbuin S, Jeanneret S, Leroy D, Spangenberg T, Waterson D, Wells TN, Willis P. Antimalarial drug discovery - the path towards eradication. Parasitology. 2014; 141(1):128-39.
  • [12]Sinden RE, Carter R, Drakeley C, Leroy D. The biology of sexual development of Plasmodium: the design and implementation of transmission-blocking strategies. Malar J. 2012; 11:70.
  • [13]Miller LH, Ackerman HC, Su XZ, Wellems TE. Malaria biology and disease pathogenesis: insights for new treatments. Nat Med. 2013; 19(2):156-67.
  • [14]Gardner MJ, Hall N, Fung E, White O, Berriman M, Hyman RW, Carlton JM, Pain A, Nelson KE, Bowman S et al.. Genome sequence of the human malaria parasite Plasmodium falciparum. Nature. 2002; 419(6906):498-511.
  • [15]Garcia CR, de Azevedo MF, Wunderlich G, Budu A, Young JA, Bannister L. Plasmodium in the postgenomic era: new insights into the molecular cell biology of malaria parasites. Int Rev Cell Mol Biol. 2008; 266:85-156.
  • [16]Winzeler EA. Malaria research in the post-genomic era. Nature. 2008; 455(7214):751-6.
  • [17]Bozdech Z, Llinas M, Pulliam BL, Wong ED, Zhu JC, DeRisi JL. The transcriptome of the intraerythrocytic developmental cycle of Plasmodium falciparum. PLoS Biology. 2003; 1(1):85-100.
  • [18]Le Roch KG, Zhou YY, Blair PL, Grainger M, Moch JK, Haynes JD, De la Vega P, Holder AA, Batalov S, Carucci DJ et al.. Discovery of gene function by expression profiling of the malaria parasite life cycle. Science. 2003; 301(5639):1503-8.
  • [19]Bunnik EM, Chung DW, Hamilton M, Ponts N, Saraf A, Prudhomme J, Florens L, Le Roch KG. Polysome profiling reveals translational control of gene expression in the human malaria parasite Plasmodium falciparum. Genome Biol. 2013; 14(11):R128.
  • [20]Foth BJ, Zhang N, Mok S, Preiser PR, Bozdech Z. Quantitative protein expression profiling reveals extensive post-transcriptional regulation and post-translational modifications in schizont-stage malaria parasites. Genome Biol. 2008; 9(12):R177.
  • [21]Le Roch KG, Johnson JR, Florens L, Zhou Y, Santrosyan A, Grainger M, Yan SF, Williamson KC, Holder AA, Carucci DJ et al.. Global analysis of transcript and protein levels across the Plasmodium falciparum life cycle. Genome Res. 2004; 14(11):2308-18.
  • [22]Cui L, Miao J. Chromatin-Mediated Epigenetic Regulation in the Malaria Parasite Plasmodium falciparum. Eukaryotic Cell. 2010;9(8):1138-1149. doi:10.1128/EC.00036-10.
  • [23]Bartfai R, Hoeijmakers WA, Salcedo-Amaya AM, Smits AH, Janssen-Megens E, Kaan A, Treeck M, Gilberger TW, Francoijs KJ, Stunnenberg HG. H2A.Z demarcates intergenic regions of the plasmodium falciparum epigenome that are dynamically marked by H3K9ac and H3K4me3. PLoS Pathogens. 2010; 6(12):e1001223.
  • [24]Chaal BK, Gupta AP, Wastuwidyaningtyas BD, Luah Y-H, Bozdech Z. Histone Deacetylases Play a Major Role in the Transcriptional Regulation of the Plasmodium falciparum Life Cycle. PLoS Pathog (2010);6(1):e1000737. doi:10.1371/journal.ppat.1000737.
  • [25]Gupta AP, Chin WH, Zhu L, Mok S, Luah YH, Lim EH, Bozdech Z. Dynamic epigenetic regulation of gene expression during the life cycle of malaria parasite Plasmodium falciparum. PLoS Pathog. 2013; 9(2): Article ID e1003170
  • [26]Rovira-Graells N, Gupta AP, Planet E, Crowley VM, Mok S, Ribas de Pouplana L, Preiser PR, Bozdech Z, Cortes A. Transcriptional variation in the malaria parasite Plasmodium falciparum. Genome Res. 2012; 22(5):925-38.
  • [27]Comeaux CA, Coleman BI, Bei AK, Whitehurst N, Duraisingh MT. Functional analysis of epigenetic regulation of tandem RhopH1/clag genes reveals a role in Plasmodium falciparum growth. Mol Microbiol. 2011; 80(2):378-90.
  • [28]Cortes A, Carret C, Kaneko O, Yim Lim BY, Ivens A, Holder AA. Epigenetic silencing of Plasmodium falciparum genes linked to erythrocyte invasion. PLoS Pathog. 2007; 3(8): Article ID e107
  • [29]Freitas-Junior LH, Hernandez-Rivas R, Ralph SA, Montiel-Condado D, Ruvalcaba-Salazar OK, Rojas-Meza AP, Mancio-Silva L, Leal-Silvestre RJ, Gontijo AM, Shorte S et al.. Telomeric heterochromatin propagation and histone acetylation control mutually exclusive expression of antigenic variation genes in malaria parasites. Cell. 2005; 121(1):25-36.
  • [30]Chookajorn T, Dzikowski R, Frank M, Li F, Jiwani AZ, Hartl DL, Deitsch KW. Epigenetic memory at malaria virulence genes. Proc Natl Acad Sci U S A. 2007; 104(3):899-902.
  • [31]Dzikowski R, Frank M, Deitsch K. Mutually exclusive expression of virulence genes by malaria parasites is regulated independently of antigen production. PLoS Pathog. 2006; 2(3): Article ID e22
  • [32]Crowley VM, Rovira-Graells N, Ribas de Pouplana L, Cortes A. Heterochromatin formation in bistable chromatin domains controls the epigenetic repression of clonally variant Plasmodium falciparum genes linked to erythrocyte invasion. Mol Microbiol. 2011; 80(2):391-406.
  • [33]Jiang L, Lopez-Barragan MJ, Jiang H, Mu J, Gaur D, Zhao K, Felsenfeld G, Miller LH. Epigenetic control of the variable expression of a Plasmodium falciparum receptor protein for erythrocyte invasion. Proc Natl Acad Sci U S A. 2010; 107(5):2224-9.
  • [34]Tuteja R, Ansari A, Chauhan VS. Emerging functions of transcription factors in malaria parasite. J Biomed Biotechnol. 2011; 2011:461979.
  • [35]Vembar SS, Scherf A, Siegel TN. Noncoding RNAs as emerging regulators of Plasmodium falciparum virulence gene expression. Curr Opin Microbiol. 2014; 20:153-61.
  • [36]Kafsack BF, Rovira-Graells N, Clark TG, Bancells C, Crowley VM, Campino SG, Williams AE, Drought LG, Kwiatkowski DP, Baker DA et al.. A transcriptional switch underlies commitment to sexual development in malaria parasites. Nature. 2014; 507(7491):248-52.
  • [37]Guizetti J, Scherf A. Silence, activate, poise and switch! Mechanisms of antigenic variation in Plasmodium falciparum. Cell Microbiol. 2013; 15(5):718-26.
  • [38]Balaji S, Babu MM, Iyer LM, Aravind L. Discovery of the principal specific transcription factors of Apicomplexa and their implication for the evolution of the AP2-integrase DNA binding domains. Nucleic Acids Res. 2005; 33(13):3994-4006.
  • [39]Coulson RM, Hall N, Ouzounis CA. Comparative genomics of transcriptional control in the human malaria parasite Plasmodium falciparum. Genome Res. 2004; 14(8):1548-54.
  • [40]Baum J, Papenfuss AT, Mair GR, Janse CJ, Vlachou D, Waters AP, Cowman AF, Crabb BS, de Koning-Ward TF. Molecular genetics and comparative genomics reveal RNAi is not functional in malaria parasites. Nucleic Acids Res. 2009; 37(11):3788-98.
  • [41]Broadbent KM, Park D, Wolf AR, Van Tyne D, Sims JS, Ribacke U, Volkman S, Duraisingh M, Wirth D, Sabeti PC et al.. A global transcriptional analysis of Plasmodium falciparum malaria reveals a novel family of telomere-associated lncRNAs. Genome Biol. 2011; 12(6):R56.
  • [42]Lopez-Barragan MJ, Lemieux J, Quinones M, Williamson KC, Molina-Cruz A, Cui K, Barillas-Mury C, Zhao K, Su XZ. Directional gene expression and antisense transcripts in sexual and asexual stages of Plasmodium falciparum. BMC Genomics. 2011; 12:587.
  • [43]Otto TD, Wilinski D, Assefa S, Keane TM, Sarry LR, Bohme U, Lemieux J, Barrell B, Pain A, Berriman M et al.. New insights into the blood-stage transcriptome of Plasmodium falciparum using RNA-Seq. Mol Microbiol. 2010; 76(1):12-24.
  • [44]Siegel TN, Hon CC, Zhang Q, Lopez-Rubio JJ, Scheidig-Benatar C, Martins RM, Sismeiro O, Coppee JY, Scherf A. Strand-specific RNA-Seq reveals widespread and developmentally regulated transcription of natural antisense transcripts in Plasmodium falciparum. BMC Genomics. 2014; 15:150.
  • [45]Wang PL, Bao Y, Yee MC, Barrett SP, Hogan GJ, Olsen MN, Dinneny JR, Brown PO, Salzman J. Circular RNA is expressed across the eukaryotic tree of life. PLoS One. 2014; 9(3): Article ID e90859
  • [46]Sorber K, Dimon MT, DeRisi JL. RNA-Seq analysis of splicing in Plasmodium falciparum uncovers new splice junctions, alternative splicing and splicing of antisense transcripts. Nucleic Acids Res. 2011; 39(9):3820-35.
  • [47]Lee JT. Epigenetic regulation by long noncoding RNAs. Science. 2012; 338(6113):1435-9.
  • [48]Pelechano V, Steinmetz LM. Gene regulation by antisense transcription. Nat Rev Genet. 2013; 14(12):880-93.
  • [49]Heo JB, Sung S. Vernalization-mediated epigenetic silencing by a long intronic noncoding RNA. Science. 2011; 331(6013):76-9.
  • [50]Penny GD, Kay GF, Sheardown SA, Rastan S, Brockdorff N. Requirement for Xist in X chromosome inactivation. Nature. 1996; 379(6561):131-7.
  • [51]van Werven FJ, Neuert G, Hendrick N, Lardenois A, Buratowski S, van Oudenaarden A, Primig M, Amon A. Transcription of two long noncoding RNAs mediates mating-type control of gametogenesis in budding yeast. Cell. 2012; 150(6):1170-81.
  • [52]Hongay CF, Grisafi PL, Galitski T, Fink GR. Antisense transcription controls cell fate in Saccharomyces cerevisiae. Cell. 2006; 127(4):735-45.
  • [53]Swiezewski S, Liu F, Magusin A, Dean C. Cold-induced silencing by long antisense transcripts of an Arabidopsis Polycomb target. Nature. 2009; 462(7274):799-802.
  • [54]Pontier DB, Gribnau J. Xist regulation and function explored. Hum Genet. 2011; 130(2):223-36.
  • [55]Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, Maier L, Mackowiak SD, Gregersen LH, Munschauer M et al.. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature. 2013; 495(7441):333-8.
  • [56]Jeck WR, Sorrentino JA, Wang K, Slevin MK, Burd CE, Liu J, Marzluff WF, Sharpless NE. Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA. 2013; 19(2):141-57.
  • [57]LaMonte G, Philip N, Reardon J, Lacsina JR, Majoros W, Chapman L, Thornburg CD, Telen MJ, Ohler U, Nicchitta CV et al.. Translocation of sickle cell erythrocyte microRNAs into Plasmodium falciparum inhibits parasite translation and contributes to malaria resistance. Cell Host Microbe. 2012; 12(2):187-99.
  • [58]Rathjen T, Nicol C, McConkey G, Dalmay T. Analysis of short RNAs in the malaria parasite and its red blood cell host. FEBS Lett. 2006; 580(22):5185-8.
  • [59]Aird D, Ross MG, Chen WS, Danielsson M, Fennell T, Russ C, Jaffe DB, Nusbaum C, Gnirke A. Analyzing and minimizing PCR amplification bias in Illumina sequencing libraries. Genome Biol. 2011; 12(2):R18.
  • [60]Levin JZ, Yassour M, Adiconis X, Nusbaum C, Thompson DA, Friedman N, Gnirke A, Regev A. Comprehensive comparative analysis of strand-specific RNA sequencing methods. Nat Methods. 2010; 7(9):709-15.
  • [61]Lopez-Barragan MJ, Quinones M, Cui K, Lemieux J, Zhao K, Su XZ. Effect of PCR extension temperature on high-throughput sequencing. Mol Biochem Parasitol. 2011; 176(1):64-7.
  • [62]Quail MA, Otto TD, Gu Y, Harris SR, Skelly TF, McQuillan JA, Swerdlow HP, Oyola SO. Optimal enzymes for amplifying sequencing libraries. Nat Methods. 2012; 9(1):10-1.
  • [63]Parkhomchuk D, Borodina T, Amstislavskiy V, Banaru M, Hallen L, Krobitsch S, Lehrach H, Soldatov A. Transcriptome analysis by strand-specific sequencing of complementary DNA. Nucleic Acids Res. 2009; 37(18): Article ID e123
  • [64]Adiconis X, Borges-Rivera D, Satija R, DeLuca DS, Busby MA, Berlin AM, Sivachenko A, Thompson DA, Wysoker A, Fennell T et al.. Comparative analysis of RNA sequencing methods for degraded or low-input samples. Nat Methods. 2013; 10(7):623-9.
  • [65]Su XZ, Wu Y, Sifri CD, Wellems TE. Reduced extension temperatures required for PCR amplification of extremely A + T-rich DNA. Nucleic Acids Res. 1996; 24(8):1574-5.
  • [66]Trapnell C, Pachter L, Salzberg SL. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics. 2009; 25(9):1105-11.
  • [67]DeLuca DS, Levin JZ, Sivachenko A, Fennell T, Nazaire MD, Williams C, Reich M, Winckler W, Getz G. RNA-SeQC: RNA-seq metrics for quality control and process optimization. Bioinformatics. 2012; 28(11):1530-2.
  • [68]Wang L, Wang S, Li W. RSeQC: quality control of RNA-seq experiments. Bioinformatics. 2012; 28(16):2184-5.
  • [69]Lemieux JE, Gomez-Escobar N, Feller A, Carret C, Amambua-Ngwa A, Pinches R, Day F, Kyes SA, Conway DJ, Holmes CC et al.. Statistical estimation of cell-cycle progression and lineage commitment in Plasmodium falciparum reveals a homogeneous pattern of transcription in ex vivo culture. Proc Natl Acad Sci U S A. 2009; 106(18):7559-64.
  • [70]Joice R, Narasimhan V, Montgomery J, Sidhu AB, Oh K, Meyer E, Pierre-Louis W, Seydel K, Milner D, Williamson K et al.. Inferring developmental stage composition from gene expression in human malaria. PLoS Comput Biol. 2013; 9(12): Article ID e1003392
  • [71]Rajaram S, Oono Y. NeatMap–non-clustering heat map alternatives in R. BMC Bioinformatics. 2010; 11:45.
  • [72]Tzeng J, Lu HH, Li WH. Multidimensional scaling for large genomic data sets. BMC Bioinformatics. 2008; 9:179.
  • [73]Beissbarth T, Speed TP. GOstat: find statistically overrepresented Gene Ontologies within a group of genes. Bioinformatics. 2004; 20(9):1464-5.
  • [74]Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, Pachter L. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc. 2012; 7(3):562-78.
  • [75]Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, Couger MB, Eccles D, Li B, Lieber M et al.. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protoc. 2013; 8(8):1494-512.
  • [76]Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, Pachter L. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol. 2010; 28(5):511-5.
  • [77]Lu B, Zeng Z, Shi T. Comparative study of de novo assembly and genome-guided assembly strategies for transcriptome reconstruction based on RNA-Seq. Sci China Life Sci. 2013; 56(2):143-55.
  • [78]Martin JA, Wang Z. Next-generation transcriptome assembly. Nat Rev Genet. 2011; 12(10):671-82.
  • [79]Lajoie M, Gascuel O, Lefort V, Brehelin L. Computational discovery of regulatory elements in a continuous expression space. Genome Biol. 2012; 13(11):R109.
  • [80]Orom UA, Derrien T, Beringer M, Gumireddy K, Gardini A, Bussotti G, Lai F, Zytnicki M, Notredame C, Huang Q et al.. Long noncoding RNAs with enhancer-like function in human cells. Cell. 2010; 143(1):46-58.
  • [81]Camblong J, Iglesias N, Fickentscher C, Dieppois G, Stutz F. Antisense RNA stabilization induces transcriptional gene silencing via histone deacetylation in S. cerevisiae. Cell. 2007; 131(4):706-17.
  • [82]Lapidot M, Pilpel Y. Genome-wide natural antisense transcription: coupling its regulation to its different regulatory mechanisms. EMBO Rep. 2006; 7(12):1216-22.
  • [83]Eksi S, Morahan BJ, Haile Y, Furuya T, Jiang H, Ali O, Xu H, Kiattibutr K, Suri A, Czesny B et al.. Plasmodium falciparum gametocyte development 1 (Pfgdv1) and gametocytogenesis early gene identification and commitment to sexual development. PLoS Pathog. 2012; 8(10): Article ID e1002964
  • [84]Epp C, Li F, Howitt CA, Chookajorn T, Deitsch KW. Chromatin associated sense and antisense noncoding RNAs are transcribed from the var gene family of virulence genes of the malaria parasite Plasmodium falciparum. RNA. 2009; 15(1):116-27.
  • [85]Glazar P, Papavasileiou P, Rajewsky N. circBase: a database for circular RNAs. RNA. 2014; 20(11):1666-70.
  • [86]Ashwal-Fluss R, Meyer M, Pamudurti NR, Ivanov A, Bartok O, Hanan M, Evantal N, Memczak S, Rajewsky N, Kadener S. circRNA Biogenesis Competes with Pre-mRNA Splicing. Mol Cell. 2014; 56(1):55-66.
  • [87]Salzman J, Gawad C, Wang PL, Lacayo N, Brown PO. Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS One. 2012; 7(2): Article ID e30733
  • [88]Marin RM, Sulc M, Vanicek J. Searching the coding region for microRNA targets. RNA. 2013; 19(4):467-74.
  • [89]Wang L, Jiang N, Wang L, Fang O, Leach LJ, Hu X, Luo Z. 3’ Untranslated regions mediate transcriptional interference between convergent genes both locally and ectopically in Saccharomyces cerevisiae. PLoS Genet. 2014; 10(1): Article ID e1004021
  • [90]Gullerova M, Proudfoot NJ. Transcriptional interference and gene orientation in yeast: noncoding RNA connections. Cold Spring Harb Symp Quant Biol. 2010; 75:299-311.
  • [91]Castelnuovo M, Rahman S, Guffanti E, Infantino V, Stutz F, Zenklusen D. Bimodal expression of PHO84 is modulated by early termination of antisense transcription. Nat Struct Mol Biol. 2013; 20(7):851-8.
  • [92]Modarresi F, Faghihi MA, Lopez-Toledano MA, Fatemi RP, Magistri M, Brothers SP, van der Brug MP, Wahlestedt C. Inhibition of natural antisense transcripts in vivo results in gene-specific transcriptional upregulation. Nat Biotechnol. 2012; 30(5):453-9.
  • [93]Morris KV, Santoso S, Turner AM, Pastori C, Hawkins PG. Bidirectional transcription directs both transcriptional gene activation and suppression in human cells. PLoS Genet. 2008; 4(11): Article ID e1000258
  • [94]Magistri M, Faghihi MA, St Laurent G, Wahlestedt C. Regulation of chromatin structure by long noncoding RNAs: focus on natural antisense transcripts. Trends Genet. 2012; 28(8):389-96.
  • [95]Bright AT, Winzeler EA. Noncoding RNA, antigenic variation, and the virulence genes of Plasmodium falciparum. BMC Biol. 2011; 9:50.
  • [96]Deitsch KW, Calderwood MS, Wellems TE. Malaria. Cooperative silencing elements in var genes. Nature. 2001; 412(6850):875-6.
  • [97]Kirchmaier AL, Rine J. DNA replication-independent silencing in S. cerevisiae. Science. 2001; 291(5504):646-50.
  • [98]Li YC, Cheng TH, Gartenberg MR. Establishment of transcriptional silencing in the absence of DNA replication. Science. 2001; 291(5504):650-3.
  • [99]Ghorbal M, Gorman M, Macpherson CR, Martins RM, Scherf A, Lopez-Rubio JJ. Genome editing in the human malaria parasite Plasmodium falciparum using the CRISPR-Cas9 system. Nat Biotechnol. 2014; 32(8):819-21.
  • [100]Wagner JC, Platt RJ, Goldfless SJ, Zhang F, Niles JC. Efficient CRISPR-Cas9-mediated genome editing in Plasmodium falciparum. Nat Methods. 2014; 11(9):915-8.
  • [101]Lambros C, Vanderberg JP. Synchronization of Plasmodium falciparum erythrocytic stages in culture. J Parasitol. 1979; 65(3):418-20.
  • [102]Reich M, Liefeld T, Gould J, Lerner J, Tamayo P, Mesirov JP. GenePattern 2.0. Nat Genet. 2006; 38(5):500-1.
  • [103]Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004; 32(5):1792-7.
  • [104]Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010; 26(6):841-2.
  • [105]Benjamini YH, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Series B1995, B 57:289–300.
  • [106]Taguchi YH, Oono Y. Relational patterns of gene expression via non-metric multidimensional scaling analysis. Bioinformatics. 2005; 21(6):730-40.
  • [107]Cabili MN, Trapnell C, Goff L, Koziol M, Tazon-Vega B, Regev A, Rinn JL. Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev. 2011; 25(18):1915-27.
  • [108]Drummond AJ AB, Buxton S, Cheung M, Heled J, Kearse M, Moir R, Stones-Havas S, Thierer T, Wilson A Geneious v4.8, Available from http://www.geneious.com. In.; 2011.
  • [109]Edgar R, Domrachev M, Lash AE. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2002; 30(1):207-10.
  文献评价指标  
  下载次数:3次 浏览次数:33次