期刊论文详细信息
BMC Genomics
De novo transcriptome sequencing and digital gene expression analysis predict biosynthetic pathway of rhynchophylline and isorhynchophylline from Uncaria rhynchophylla, a non-model plant with potent anti-alzheimer’s properties
Wei Zu3  Shoukun Dong3  Lijun Liu3  Qi Tang2  Peng Wu5  Iain W Wilson4  Deyou Qiu1  Shugen Wei7  Xiaojun Ma6  Qianqian Guo5 
[1] State Key Laboratory of Tree Genetics and Breeding, The Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China;Hunan Agricultural University, Changsha 410128, China;College of Agriculture, Northeast Agricultural University, Harbin 150030, China;CSIRO Plant Industry, PO Box 1600, Canberra ACT 2001, Australia;College of Life Science, Agriculture and Forest, Qiqihar University, Qiqihar 161006, China;Yunnan Branch Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Jinghong 530023, China;Guangxi Medicinal Botanical Garden, Nanning 530023, China
关键词: Terpene indole alkaloid biosynthesis;    Isorhynchophylline;    Rhynchophylline;    Uncaria rhynchophylla;    DGE;    Transcriptome;   
Others  :  1216273
DOI  :  10.1186/1471-2164-15-676
 received in 2013-08-31, accepted in 2014-08-04,  发布年份 2014
PDF
【 摘 要 】

Background

The major medicinal alkaloids isolated from Uncaria rhynchophylla (gouteng in chinese) capsules are rhynchophylline (RIN) and isorhynchophylline (IRN). Extracts containing these terpene indole alkaloids (TIAs) can inhibit the formation and destabilize preformed fibrils of amyloid β protein (a pathological marker of Alzheimer’s disease), and have been shown to improve the cognitive function of mice with Alzheimer-like symptoms. The biosynthetic pathways of RIN and IRN are largely unknown.

Results

In this study, RNA-sequencing of pooled Uncaria capsules RNA samples taken at three developmental stages that accumulate different amount of RIN and IRN was performed. More than 50 million high-quality reads from a cDNA library were generated and de novo assembled. Sequences for all of the known enzymes involved in TIAs synthesis were identified. Additionally, 193 cytochrome P450 (CYP450), 280 methyltransferase and 144 isomerase genes were identified, that are potential candidates for enzymes involved in RIN and IRN synthesis. Digital gene expression profile (DGE) analysis was performed on the three capsule developmental stages, and based on genes possessing expression profiles consistent with RIN and IRN levels; four CYP450s, three methyltransferases and three isomerases were identified as the candidates most likely to be involved in the later steps of RIN and IRN biosynthesis.

Conclusion

A combination of de novo transcriptome assembly and DGE analysis was shown to be a powerful method for identifying genes encoding enzymes potentially involved in the biosynthesis of important secondary metabolites in a non-model plant. The transcriptome data from this study provides an important resource for understanding the formation of major bioactive constituents in the capsule extract from Uncaria, and provides information that may aid in metabolic engineering to increase yields of these important alkaloids.

【 授权许可】

   
2014 Guo et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150629174037128.pdf 2886KB PDF download
Figure 10. 98KB Image download
Figure 9. 92KB Image download
Figure 3. 29KB Image download
Figure 7. 81KB Image download
Figure 6. 58KB Image download
Figure 5. 81KB Image download
Figure 4. 126KB Image download
Figure 3. 51KB Image download
Figure 2. 128KB Image download
Figure 1. 69KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 3.

Figure 9.

Figure 10.

【 参考文献 】
  • [1]Ferri CP, Prince M, Brayne C, Brodaty H, Fratiglioni L, Ganguli M, Hall K, Hasegawa K, Hendrie H, Huang YQ, Jorm A, Mather C, Menezes PR, Rimmer E, Scazufca M: Global prevalence of dementia: a Delphi consensus study. Lancet 2005, 366:2112-2117.
  • [2]Lane RM, He Y: Butyrylcholinesterase genotype and gender influence Alzheimer’s disease phenotype. Alzheimers Dement 2013, 9:e1-e73.
  • [3]Terry AV Jr, Callahan PM, Hall B, Webster SJ: Alzheimer’s disease and age-related memory decline (preclinical). Pharmacol Biochem Behav 2011, 99:190-210.
  • [4]Ehrman TM, Barlow DJ, Hylands PJ: Phytochemical databases of Chinese herbal constituents and bioactive plant compounds with known target specificities. J Chem Inf Model 2007, 47:254-263.
  • [5]Fujiwara H, Iwasaki K, Furukawa K, Seki T, He M, Maruyama M, Tomita N, Kudo Y, Higuchi M, Saido TC, Maeda S, Takashima A, Hara M, Ohizumi Y, Arai H: Uncaria rhynchophylla, a chinese medicinal herb, has potent anti-aggregation effects on alzheimer’ s β-amyloid proteins. J Neurosci Res 2006, 84:427-433.
  • [6]Xian YF, Lin ZX, Zhao M, Mao QQ, Ip SP, Che CT: Uncaria rhynchophylla ameliorates cognitive deficits induced by D-galactose in mice. Planta Med 2011, 77:1977-1983.
  • [7]Yuan D, Ma B, Yang JY, Xie YY, Wang L, Zhang LJ, Kano Y, Wu CF: Anti-inflammatory effects of rhynchophylline and isorhynchophylline in mouse N9 Microglial cells and the molecular mechanism. Int Immunopharmacol 2009, 9:1549-1554.
  • [8]Xian YF, Lin ZX, Mao QQ, Hu Z, Zhao M, Che CT, Ip SP: Bioassay-guided isolation of neuroprotective compounds from Uncaria rhynchophylla against beta-amyloid-induced neurotoxicity. Evid-Based Compl Alt 2012, 2012:1-8.
  • [9]Xian YF, Lin ZX, Mao QQ, Ip SP, Su ZR, Lai XP: Protective effect of isorhynchophylline against β-amyloid-induced neurotoxicity in PC12 cells. Cell Mol Neurobiol 2012, 3:353-360.
  • [10]Stöckigta J, Barlebenb L, Panjikarc S, Lorisa EA: 3D-structure and function of strictosidine synthase-the key enzyme of monoterpenoid indole alkaloid biosynthesis. Plant Physiol Biochem 2008, 46:340-355.
  • [11]Pasquali G, Porto DD, Fett-Neto AG: Metabolic engineering of cell cultures versus whole plant complexity in production of bioactive monoterpene indole alkaloids: recent progress related to old dilemma. J Biosci Bioeng 2006, 4:287-296.
  • [12]Fawcett SL, Grant I, Hall PN, Kelsall AWR, Nicholson JC: Vincristine as a treatment for a large haemangioma threatening vital functions. Br J Plast Surg 2004, 57:168-171.
  • [13]Casado P, Zuazua-Villar P, del Valle E, Martı’nez-Campa C, Lazo PS, Ramos S: Vincristine regulates the phosphorylation of the antiapoptotic protein HSP27 in breast cancer cells. Cancer Lett 2007, 247:273-282.
  • [14]Tarlaci S: Vincristine-induced fatal neuropathy in non-Hodgkin’s lymphoma. Neurotoxicology 2008, 29:748-749.
  • [15]Chiu WH, Luo SJ, Chen CL, Cheng JH, Hsieh CY, Wang CY, Huang WC, Su WC, Lin CF: Vinca alkaloids cause aberrant ROS-mediated JNK activation, Mcl-1 downregulation, DNA damage, mitochondrial dysfunction, and apoptosis in lung adenocarcinoma cells. Biochem Pharmacol 2012, 9:1159-1171.
  • [16]Rolf S, Bruns HJ, Wichter T, Kirchhof P, Ribbing M, Wasmer K, Paul M, Breithardt G, Haverkamp W, Eckardt L: The ajmaline challenge in Brugada syndrome: diagnostic impact, safety, and recommended protocol. Eur Heart J 2003, 24:1104-1112.
  • [17]Wolpert C, Echternach C, Veltmann C, Antzelevitch C, Thomas GP, Spehl S, Streitner F, Kuschyk J, Schimpf R, Haase KK, Borggrefe M: Intravenous drug challenge using flecainide and ajmaline in patients with Brugada syndrome. Heart Rhythm 2005, 3:254-260.
  • [18]Swann AC, Birnbaum D, Jagar AA, Dougherty DM, Moeller FG: Acute yohimbine increases laboratory-measured impulsivity in normal subjects. Biol Psychiatry 2005, 57:1209-1211.
  • [19]Farouk M, El-Aziz LA, El-Gindy AE, Shokry E: Validated methods for determination of yohimbine hydrochloride in the presence of its degradation products. Bull Fac Pharm Cairo Univ 2011, 49:67-79.
  • [20]Subramanian N, Sundaraganesan N, Sudha S, Aroulmoji V, Sockalingam GD, Bergamin M: Experimental and theoretical investigation of the molecular and electronic structure of anticancer drug camptothecin. Spectrochim Acta A Mol Biomol Spectrosc 2011, 78:1058-1067.
  • [21]Krishnakumar G, Rameshkumar KB, Srinivas P, Satheeshkumar K, Krishnan PN: Estimation of camptothecin and pharmacological evaluation of Ophiorrhiza prostrata D. Don and Ophiorrhiza mungos L. Asian Pac J Trop Biomed 2012, 2:S727-S731.
  • [22]Kofoed PE, Có F, Johansson P, Dias F, Cabrai C, Hedegaard K, Aaby P, Rombo L: Treatment of uncomplicated malaria in children in Guinea-Bissau with chloroquine, quinine, and sulfadoxine-pyrimethamine. Trans R Soc Trop Med Hyg 2002, 3:304-309.
  • [23]Eltahir HG, Omer AA, Mohamed AA, Adam I: Comparison of artesunate and quinine in the treatment of Sudanese children with severe Plasmodium falciparum malaria. Trans R Soc Trop Med Hyg 2010, 10:684-686.
  • [24]Contin A, van der Heijden R, Lefeber AWM, Verpoorte R: The iridoid glucoside secologanin is derived from the novel triose phosphate/pyruvate pathway in a Catharanthus roseus cell culture. FEBS Lett 1998, 434:413-416.
  • [25]Yamazaki Y, Kitajima M, Arita M, Takayama H, Sudo H, Yamazaki M, Aimi N, Saito K: Biosynthesis of camptothecin in silico and in vivo tracer study from [1-13C] glucose. Plant Physiol 2004, 134:161-170.
  • [26]Collu G, Unver N, Peltenburg-Looman AMG, van der Heijden R, Verpoorte R, Memelink J: Geraniol 10-hydroxylase1, a cytochrome P450 enzyme involved in terpenoid indole alkaloid biosynthesis. FEBS Lett 2001, 508:215-220.
  • [27]Collu G, Garcia A, van der Heijden R, Verpoorte R: Activity of the cytochrome P450 enzyme geraniol 10-hydroxylase and alkaloid production in plant cell cultures. Plant Sci 2002, 1:165-172.
  • [28]Irmler S, Schröder G, St-Pierre B, Crouch NP, Hotze M, Schmidt J, Strack D, Matern U, Schröder J: Indole alkaloid biosynthesis in Catharanthus roseus: new enzyme activities and identification of cytochrome P450 CYP72A1 as secologanin synthase. Plant J 2000, 6:797-804.
  • [29]Yamamoto H, Katano N, Ooi A, Inoue K: Secologanin synthase which catalyzes the oxidative cleavage of loganin into secologanin is a cytochrome P450. Phytochemistry 2000, 53:7-12.
  • [30]Geu-Flores F, Sherden NH, Courdavault V, Burlat V, Glenn WS, Wu C, Nims E, Cui Y, O’Connor SE: An alternative route to cyclic terpenes by reductive cyclization in iridoid biosynthesis. Nature 2012, 492:138-142.
  • [31]Asada K, Salim V, Masada-Atsumi S, Edmunds E, Nagatoshi M, Terasaka K, Mizukami H, De Luca V: A 7-deoxyloganetic acid glucosyltransferase contributes a key step in Secologanin Biosynthesis in Madagascar periwinkle. Plant Cell 2013, 25:4123-4134.
  • [32]Salim V, Yu F, Altarejos-Caballero J, De Luca V: Virus induced gene silencing identifies Catharanthus roseus 7-deoxyloganic acid 7-hydroxylase, a step in iridoid and monoterpenoid indole alkaloid biosynthesis. Plant J 2013. http://dx.doi.org/10.1111/tpj.12330 webcite
  • [33]Guirimand G, Guihur A, Ginis O, Poutrain P, Héricourt F, Oudin A, Lanoue A, St-Pierre B, Burlat V, Courdavault V: The subcellular organization of strictosidine biosynthesis in Catharanthus roseus epidermis highlights several trans-tonoplast translocations of intermediate metabolites. FEBS J 2011, 278:749-763.
  • [34]Canel C, Lopes-Cardoso MI, Whitmer S, van der Fits L, Pasquali G, van der Heijden R, Hoge JHC, Verpoorte R: Effects of over-expression of strictosidine synthase and tryptophan decarboxylase on alkaloid production by cell cultures of Catharanthus roseus. Planta 1998, 205:414-419.
  • [35]Oudin A, Courtois M, Rideau M, Clastre M: The iridoid pathway in Catharanthus roseus alkaloid biosynthesis. Phytochem Rev 2007, 6:259-276.
  • [36]Salim V, De Luca V: Towards complete elucidation of monoterpene indole alkaloid biosynthesis pathway: Catharanthus roseus as a pioneer system. Adv Bot Res 2013, 68:1-37.
  • [37]Salim V, Wiens B, Masada-Atsumi S, Yu F, De Luca V: 7-Deoxyloganetic acid synthase catalyzes a key 3 step oxidation to form 7-deoxyloganetic acid in Catharanthus roseus iridoid biosynthesis. Phytochemistry 2014, 101:23-31.
  • [38]Erlich Y, Mitra PP, dela Bastide M, McCombie WR, Hannon GJ: Alta-Cyclic: a self-optimizing base caller for next-generation sequencing. Nat Methods 2008, 8:679-682.
  • [39]Jiang L, Schlesinger F, Davis CA, Zhang Y, Li R, Salit M, Gingeras TR, Oliver B: Synthetic spike-in standards for RNA-seq experiments. Genome Res 2011, 21:1543-1551.
  • [40]Hansen KD, Brenner SE, Dudoit S: Biases in Illumina transcriptome sequencing caused by random hexamer priming. Nucleic Acids Res 2010, 38:e131-e131.
  • [41]Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen ZH, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A: Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 2011, 29:644-652.
  • [42]Kumar S, Blaxter ML: Comparing de novo assemblers for 454 transcriptome data. BMC Genomics 2010, 11:571.
  • [43]Götz S, García-Gómez JM, Terol J, Williams TD, Nagaraj SH, Nueda SH, Robles M, Talón M, Dopazo J, Conesa A: High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res 2008, 36:3420-3435.
  • [44]Iseli C, Jongeneel CV, Bucher P: ESTScan: a program for detecting, evaluating, and reconstructing potential coding regions in EST sequences. Proc Int Conf Intell Syst Mol Biol 1999, 138-148.
  • [45]O’ Connor SE, Maresh JJ: Chemistry and biology of monoterpene indole alkaloid biosynthesis. Nat Prod Rep 2006, 23:532-547.
  • [46]Li B, Dewey CN: RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 2011, 12:323.
  • [47]Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B: Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 2008, 5:621-628.
  • [48]Robinson MD, Oshlack A: A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol 2010, 11:R25.
  • [49]Anders S, Huber W: Differential expression analysis for sequence count data. Genome Biol 2010, 11:R106.
  • [50]Storey JD, Tibshirani R: Statistical significance for genomewide studies. Proc Natl Acad Sci U S A 2003, 16:9440-9445.
  • [51]Benjamini Y, Hochberg Y: Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Statist Soc B 1995, 1:289-300.
  • [52]Young MD, Wakefield MJ, Smyth GK, Oshlack A: Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol 2010, 11:R14.
  • [53]Tang Q, Ma XJ, Mo CM, Wilson IW, Song C, Zhao H, Yang YF, Fu W, Qiu DY: An efficient approach to finding Siraitia grosvenorii triterpene biosynthetic genes by RNA-seq and digital gene expression analysis. BMC Genomics 2011, 12:343.
  • [54]Coon MJ: Cytochrome P450: nature’s most versatile biological catalyst. Annu Rev Pharmacol Toxicol 2005, 45:1-25.
  • [55]Morant M, Bak S, Moller BL, Werck-Reichhart D: Plant cytochromes P450: tools for pharmacology, plant protection and phytoremediation. Curr Opin Biotechnol 2003, 14:151-162.
  • [56]Guttikonda SK, Trupti J, Bisht NC, Chen H, An YQC, Pandey S, Xu D, Yu O: Whole genome co-expression analysis of soybean cytochrome P450 genes identifies nodulationspecific P450 monooxygenases. BMC Plant Biol 2010, 10:243.
  • [57]Devi BS, Kim YJ, Sathiyamoorthy S, Khorolragchaa A, Gayathri S, Parvin S, Yang DU, Selvi SK, Lee OR, Lee S, Yang DC: Classification and characterization of putative cytochrome P450 genes from panax ginseng C. A. Meyer. Biochemistry (Mosc) 2011, 12:1347-1359.
  • [58]Li DX, Du XJ, Zhao XF, Wang JX: Cloning and expression analysis of an O-methyltransferase (OMT) gene from Chinese shrimp, Fenneropenaeus chinensis. Fish Shellfish Immunol 2006, 21:284-292.
  • [59]Kota P, Guo DJ, Zubiet C, Noel J, Dixon RA: O-Methylation of benzaldehyde derivatives by “lignin specific” caffeic acid 3-O-methyltransferase. Phytochemistry 2004, 65:837-846.
  • [60]Li Y, Luo HM, Sun C, Song JY, Sun YZ, Wu Q, Wang N, Yao H, Steinmetz A, Chen SL: EST analysis reveals putative genes involved in glycyrrhizin biosynthesis. BMC Genomics 2010, 11:268.
  • [61]Logacheva MD, Kasianov AS, Vinogradov DV, Samigullin TH, Gelfand MS, Makeev VJ, Penin AA: De novo sequencing and characterization of floral transcriptome in two species of buckwheat (Fagopyrum). BMC Genomics 2011, 12:30.
  • [62]Al-Dous EK, George B, Al-Mahmoud ME, Al-Jaber MY, Wang H, Salameh YM, Al-Azwani EK, Chaluvadi S, Pontaroli AC, DeBarry J, Arondel V, Ohlrogge J, Saie IJ, Suliman-Elmeer KM, Bennetzen JL, Kruegger RR, Malek JA: De novo genome sequencing and comparative genomics of date palm (Phoenix dactylifera). Nat Biotechnol 2011, 6:521-527.
  • [63]Gahlan P, Singh HR, Shankar R, Sharma N, Kumari A, Chawla V, Ahuja PS, Kumar S: De novo sequencing and characterization of Picrorhiza kurrooa transcriptome at two temperatures showed major transcriptome adjustments. BMC Genomics 2012, 13:126.
  • [64]Ashrafi H, Hill T, Stoffel K, Kozik A, Yao JQ, Chin-Wo SR, Deynze AV: De novo assembly of the pepper transcriptome (Capsicum annuum): a benchmark for in silico discovery of SNPs, SSRs and candidate genes. BMC Genomics 2012, 13:571.
  • [65]Imelfort M, Edwards D: De novo sequencing of plant genomes using second-generation technologies. Brief Bioinform 2009, 6:609-618.
  • [66]Wang Z, Gerstein M, Snyder M: RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 2009, 10:57-63.
  • [67]Sun C, Li Y, Wu Q, Luo HM, Sun YZ, Song JY, Lui EMK, Chen SL: RDe novo sequencing and analysis of the American ginseng root transcriptome using a GS FLX Titanium platform to discover putative genes involved in ginsenoside biosynthesis. BMC Genomics 2010, 11:262.
  • [68]Annadurai RS, Jayakumar V, Mugasimangalam RC, Katt MA, Anand S, Gopinathan S, Sarma SP, Fernandes SJ, Mullapudi N, Murugesan S, Rao SN: Next generation sequencing and de novo transcriptome analysis of Costus pictus D. Don, a non-model plant with potent anti-diabetic properties. BMC Genomics 2012, 13:663.
  • [69]Zhou YJ, Gao F, Liu R, Feng JC, Li HJ: De novo sequencing and analysis of root transcriptome using 454 pyrosequencing to discover putative genes associated with drought tolerance in Ammopiptanthus mongolicus. BMC Genomics 2012, 13:266.
  • [70]Eveland AL, Satoh-Nagasawa N, Goldshmidt A, Meyer S, Beatty M, Sakai H, Ware D, Jackson D: Digital gene expression signatures for maize development. Plant Physiol 2010, 11(154):1024-1039.
  • [71]Verpoorte R, Contin A, Memelink J: Biotechnology for the production of plant secondary metabolites. Phytochem Rev 2002, 1:13-25.
  • [72]van Der Heijden R, Jacobs DI, Snoeijer W, Hallard D, Verpoorte R: The Catharanthus Alkaloids:Pharmacognosy and Biotechnology. Curr Med Chem 2004, 5:607-628.
  • [73]Glenn WS, Runguphan W, O’ Connor SE: Recent progress in the metabolic engineering of alkaloids in plant systems. Curr Opin Biotechnol 2013, 24:354-365.
  • [74]Tiwari R, Awasthi A, Mall M, Shukla AK, Satya Srinivas KVN, Syamasundar KV, Kalra A: Bacterial endophyte-mediated enhancement of in planta content of key terpenoid indole alkaloids and growth parameters of Catharanthus roseus. Ind Crop Prod 2013, 43:306-310.
  • [75]Suttipanta N, Pattanaik S, Gunjan S, Xie CH, Littleton J, Yuan L: Promoter analysis of the Catharanthus roseus geraniol 10-hydroxylase gene involved in terpenoid indole alkaloid biosynthesis. Biochim Biophys Acta 2007, 1769:139-148.
  • [76]Memelink J: The use of genetics to dissect plant secondary pathways. Curr Opin Plant Biol 2005, 8:230-235.
  • [77]Montiel G, Breton C, Thiersault M, Burlat V, Jay-Allemand C, Gantet P: Transcription factor Agamous-like 12 from arabidopsis promotes tissue-like organization and alkaloid biosynthesis in Catharanthus roseus suspension cells. Metab Eng 2007, 9:125-132.
  • [78]Chemler JA, Koffas MA: Metabolic engineering for plant natural product biosynthesis in microbes. Curr Opin Biotechnol 2008, 19:597-605.
  • [79]Cordell GA: Fifty years of alkaloid biosynthesis in Phytochemistry. Phytochemistry 2013, 91:29-51.
  • [80]Guo Q, Ma X, Jin’e F, Wei Z: Study on accumulation feature of rhynchophylline and isorhynchophylline in Uncaria rhynchophylla. Res J Biotechnol 2014, 9:1-6.
  • [81]Guo QQ, Ma XJ, Wei SG, Bai LH, Fu JE, Dong SK, Liu LJ, Zu W: Isolation of RNA from uncaria with medicinal plant. Crops 2013, 5:80-83.
  文献评价指标  
  下载次数:104次 浏览次数:22次