BMC Infectious Diseases | |
Characterisation of blaTEM genes and types of β-lactamase plasmids in Neisseria gonorrhoeae – the prevalent and conserved blaTEM-135 has not recently evolved and existed in the Toronto plasmid from the origin | |
Magnus Unemo5  Manju Bala2  Martin Sundqvist5  Shu-ichi Nakayama1  Shao-chun Chen7  Sunil Sethi6  Makoto Ohnishi1  Åsa Johansson4  Jo-Anne R Dillon3  Daniel Golparian5  Ibrahim Muhammad5  | |
[1] National Institute of Infectious Diseases, Tokyo, Japan;Apex Regional STD Teaching, Training and Research Centre, VMMC and Safdarjang Hospital, New Delhi, India;Department of Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada;Department of Clinical Microbiology, Central Hospital, Växjö, Sweden;Department of Laboratory Medicine, WHO Collaborating Centre for Gonorrhoea and other Sexually Transmitted Infections, National Reference Laboratory for Pathogenic Neisseria, Microbiology, Örebro University Hospital, SE-701 85, Örebro, Sweden;Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India;National Center for STD Control, Chinese CDC, Nanjing, China | |
关键词: Rio/Toronto plasmid, Extended-spectrum β-lactamase (ESBL); TEM-135; TEM-1; blaTEM-135; blaTEM-1; Antimicrobial resistance; Gonorrhoea; | |
Others : 1125800 DOI : 10.1186/1471-2334-14-454 |
|
received in 2014-06-16, accepted in 2014-08-18, 发布年份 2014 | |
【 摘 要 】
Background
Antimicrobial resistance (AMR) in Neisseria gonorrhoeae is a major concern worldwide. It has been recently feared that the blaTEM-1 gene is, via blaTEM-135, evolving into an extended-spectrum β-lactamase (ESBL), which could degrade all cephalosporins including ceftriaxone. The aims of the present study were to characterize the blaTEM genes, types of β-lactamase plasmids, the degradation of ampicillin by TEM-135 compared to TEM-1, and to perform molecular epidemiological typing of β-lactamase-producing N. gonorrhoeae strains internationally.
Methods
β-lactamase producing N. gonorrhoeae isolates (n = 139) cultured from 2000 to 2011 in 15 countries were examined using antibiograms, blaTEM gene sequencing, β-lactamase plasmid typing, and N. gonorrhoeae multiantigen sequence typing (NG-MAST). Furthermore, the blaTEM gene was sequenced in the first described Toronto plasmid (pJD7), one of the first Asian plasmids (pJD4) and African plasmids (pJD5) isolated in Canada. The degradation of ampicillin by TEM-135 compared to TEM-1 was examined using a MALDI-TOF MS hydrolysis assay.
Results
Six different blaTEM sequences were identified (among isolates with 125 different NG-MAST STs), i.e. blaTEM-1 (in 104 isolates), blaTEM-135 (in 30 isolates), and four novel blaTEM sequences (in 5 isolates). The blaTEM-1 allele was only found in the African and Asian plasmids, while all Rio/Toronto plasmids possessed the blaTEM-135 allele. Most interesting, the first described gonococcal Toronto plasmid (pJD7), identified in 1984, also possessed the highly conserved blaTEM-135 allele. The degradation of ampicillin by TEM-135 compared to TEM-1 was indistinguishable in the MALDI-TOF MS hydrolysis assay.
Conclusions
blaTEM-135, encoding TEM-135, is predominantly and originally associated with the Rio/Toronto plasmid and prevalent among the β-lactamase producing gonococcal strains circulating globally. blaTEM-135 does not appear, as previously hypothesized, to have recently evolved due to some evolutionary selective pressure, for example, by the extensive use of extended-spectrum cephalosporins worldwide. On the contrary, the present study shows that blaTEM-135 existed in the Toronto plasmid from its discovery and that blaTEM-135 is highly conserved (not further evolved in the past >30 years). Nevertheless, international studies for monitoring the presence of different blaTEM alleles, the possible evolution of the blaTEM-135 allele, and the types of β-lactamase producing plasmids, remain imperative.
【 授权许可】
2014 Muhammad et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150217025414868.pdf | 572KB | download | |
Figure 1. | 74KB | Image | download |
【 图 表 】
Figure 1.
【 参考文献 】
- [1]World Health Organization: Global Incidence and Prevalence of Selected Curable Sexually Transmitted Infections - 2008. Geneva: World Health Organization; 2012. Available at: http://www.who.int/reproductivehealth/publications/rtis/2008_STI_estimates.pdf; webcite (Accessed: July 24, 2014)
- [2]Lewis DA: The gonococcus fights back: is this time a knock out? Sex Transm Infect 2010, 86:415-421.
- [3]Tapsall JW, Ndowa F, Lewis DA, Unemo M: Meeting the public health challenge of multidrug- and extensively drug-resistant Neisseria gonorrhoeae. Expert Rev Anti Infect Ther 2009, 7:821-834.
- [4]Unemo M, Shafer WM: Antimicrobial resistance in Neisseria gonorrhoeae in the 21st century: past, evolution and future. Clin Microbiol Rev 2014, 27:587-613.
- [5]Unemo M, Nicholas RA: Emergence of multi-drug resistant, extensively drug-resistant and untreatable gonorrhea. Future Microbiol 2012, 7:1401-1422.
- [6]Deguchi T, Yasuda M, Yokoi S, Ishida K, Ito M, Ishihara S, Minamidate K, Harada Y, Tei K, Kojima K, Tamaki M, Maeda S: Treatment of uncomplicated gonococcal urethritis by double-dosing of 200 mg cefixime at a 6-h interval. J Infect Chemother 2003, 9:35-39.
- [7]Yokoi S, Deguchi T, Ozawa T, Yasuda M, Ito S, Kubota Y, Tamaki M, Maeda S: Threat to cefixime treatment for gonorrhea. Emerg Infect Dis 2007, 13:1275-1277.
- [8]Ison CA, Hussey J, Sankar KN, Evans J, Alexander S: Gonorrhoea treatment failures to cefixime and azithromycin in England, 2012. Euro Surveill 2011, 16(14):pii=19833.
- [9]Unemo M, Golparian D, Nicholas R, Ohnishi M, Gallay A, Sednaoui P: High-level cefixime- and ceftriaxone-resistant Neisseria gonorrhoeae in France: novel penA mosaic allele in a successful international clone causes treatment failure. Antimicrob Agents Chemother 2012, 56:1273-1280.
- [10]Unemo M, Golparian D, Stary A, Eigentler A: First Neisseria gonorrhoeae strain with resistance to cefixime causing gonorrhoea treatment failure in Austria, 2011. Euro Surveill 2011, 16(43):pii=19998.
- [11]Unemo M, Golparian D, Syversen G, Vestrheim DF, Moi H: Two cases of verified clinical failures using internationally recommended first-line cefixime for gonorrhoea treatment, Norway, 2010. Euro Surveill 2010, 15(47):pii=19721.
- [12]Lewis DA, Sriruttan C, Müller EE, Golparian D, Gumede L, Fick D, de Wet J, Maseko V, Coetzee J, Unemo M: Phenotypic and genetic characterization of the first two cases of extended-spectrum-cephalosporin-resistant Neisseria gonorrhoeae infection in South Africa and association with cefixime treatment failure. J Antimicrob Chemother 2013, 68:1267-1270.
- [13]Allen VG, Mitterni L, Seah C, Rebbapragada A, Martin IE, Lee C, Siebert H, Towns L, Melano RG, Low DE: Neisseria gonorrhoeae treatment failure and susceptibility to cefixime in Toronto, Canada. JAMA 2013, 309:163-170.
- [14]Unemo M, Golparian D, Potočnik M, Jeverica S: Treatment failure of pharyngeal gonorrhoea with internationally recommended first-line ceftriaxone verified in Slovenia, September 2011. Euro Surveill 2012, 17:1-4.
- [15]Unemo M, Golparian D, Hestner A: Ceftriaxone treatment failure of pharyngeal gonorrhoea verified by international recommendations, Sweden, July 2010. Euro Surveill 2011, 16:1-3.
- [16]Tapsall J, Read P, Carmody C, Bourne C, Ray S, Limnios A, Sloots T, Whiley D: Two cases of failed ceftriaxone treatment in pharyngeal gonorrhoea verified by molecular microbiological methods. J Med Microbiol 2009, 58:683-687.
- [17]Chen YM, Stevens K, Tideman R, Zaia A, Tomita T, Fairley CK, Lahra M, Whiley D, Hogg G: Failure of ceftriaxone 500 mg to eradicate pharyngeal gonorrhoea, Australia. J Antimicrob Chemother 2013, 68:1445-1447.
- [18]Ohnishi M, Golparian D, Shimuta K, Saika T, Hoshina S, Iwasaku K, Nakayama S, Kitawaki J, Unemo M: Is Neisseria gonorrhoeae initiating a future era of untreatable gonorrhea?: Detailed characterization of the first strain with high-level resistance to ceftriaxone. Antimicrob Agents Chemother 2011, 55:3538-3545.
- [19]Read PJ, Limnios EA, McNulty A, Whiley D, Lahra LM: One confirmed and one suspected case of pharyngeal gonorrhoea treatment failure following 500 mg ceftriaxone in Sydney, Australia. Sex Health 2013, 10:460-462.
- [20]Camara J, Serra J, Ayats J, Bastida T, Carnicer-Pont D, Andreu A, Ardanuy C: Molecular characterization of two high-level ceftriaxone-resistant Neisseria gonorrhoeae isolates detected in Catalonia, Spain. J Antimicrob Chemother 2012, 67:1858-1860.
- [21]Ashford WA, Golash RG, Hemming VG: Penicillinase-producing Neisseria gonorrhoeae. Lancet 1976, 2:657-658.
- [22]Phillips I: Beta-lactamase-producing, penicillin-resistant gonococcus. Lancet 1976, 2:656-657.
- [23]Bergström S, Norlander L, Norqvist A, Normark S: Contribution of a TEM-1-like beta-lactamase to penicillin resistance in Neisseria gonorrhoeae. Antimicrob Agents Chemother 1978, 13:618-623.
- [24]Pagotto F, Aman AT, Ng L-K, Yeung KH, Brett M, Dillon JA: Sequence analysis of the family of penicillinase-producing plasmids of Neisseria gonorrhoeae based on DNA sequencing. Plasmid 2000, 43:24-34.
- [25]Palmer HM, Leeming JP, Turner A: A multiplex polymerase chain reaction to differentiate β-lactamase plasmids of Neisseria gonorrhoeae. J Antimicrob Chemother 2000, 45:777-782.
- [26]Dillon JR, Yeung KH: β-lactamase plasmids and chromosomally mediated antibiotic resistance in pathogenic Neisseria species. Clin Microbiol Rev 1989, 2:S125-S133.
- [27]Müller EE, Fayemiwo SA, Lewis DA: Characterization of a novel β-lactamase-producing plasmid in Neisseria gonorrhoeae: sequence analysis and molecular typing of host gonococci. J Antimicrob Chemother 2011, 66:1514-1517.
- [28]Trembizki E, Buckley C, Lawrence A, Lahra M, Whiley D: On behalf of the GRAND study investigators: Characterisation of a novel Neisseria gonorrhoeae penicillinase-producing plasmid, Australia 2012. Antimicrob Agents Chemother 2014, 58:4984-4985.
- [29]Ohnishi M, Ono E, Shimuta K, Watanabe H, Okamura N: Identification of TEM-135 β-lactamase in penicillinase-producing Neisseria gonorrhoeae strains in Japan. Antimicrob Agents Chemother 2010, 54:3021-3023.
- [30]Arlet G, Goussard S, Courvalin P, Philippon A: Sequences of the genes for the TEM-20, TEM-21, TEM-22, and TEM-29 extended-spectrum β-lactamases. Antimicrob Agents Chemother 1999, 43:969-971.
- [31]Michael GB, Butaye P, Cloeckaert A, Schwarz S: Genes and mutations conferring antimicrobial resistance in Salmonella: An update. Microb Infect 2006, 8:1898-1914.
- [32]Huang W, Palzkill T: A natural polymorphism in beta-lactamase is a global suppressor. Proc Natl Acad Sci U S A 1997, 94:8801-8806.
- [33]Pasquali F, Kehrenberg C, Manfreda G, Schwarz S: Physical linkage of Tn3 and part of Tn1721 in a tetracycline and ampicillin resistance plasmid from Salmonella Typhimurium. J Antimicrob Chemother 2005, 55:562-565.
- [34]Nakayama S, Tribuddharat C, Prombhul S, Shimuta K, Srifuengfung S, Unemo M, Ohnishi M: Molecular analyses of TEM genes and their corresponding penicillinase-producing Neisseria gonorrhoeae isolates in Bangkok, Thailand. Antimicrob Agents Chemother 2012, 56:916-920.
- [35]Chen SC, Yin YP, Dai XQ, Yu RX, Han Y, Sun HH, Ohnishi M, Unemo M, Chen XS: Prevalence and molecular epidemiological typing of penicillinase-producing Neisseria gonorrhoeae and their bla(TEM-135) gene variants in Nanjing, China. Sex Transm Dis 2013, 40:872-876.
- [36]Srifeungfung S, Roongpisuthipong A, Asavapiriyanont S, Lolekha R, Tribuddharat C, Lokpichart S, Sungthong P, Tongtep P: Prevalence of Chlamydia trachomatis and Neisseria gonorrhoeae in HIV-seropositive patients and gonococcal antimicrobial susceptibility: an update in Thailand. J Infect Dis 2009, 62:467-470.
- [37]Orencia MC, Yoon JS, Ness JE, Stemmer WP, Stevens RC: Predicting the emergence of antibiotic resistance by directed evolution and structural analysis. Nat Struct Biol 2001, 8:238-242.
- [38]Unemo M, Fasth O, Fredlund H, Limnios A, Tapsall JW: Phenotypic and genetic characterization of the 2008 WHO Neisseria gonorrhoeae reference strain panel intended for global quality assurance and quality control of gonococcal antimicrobial resistance surveillance for public health purposes. J Antimicrob Chemother 2009, 63:1142-1151.
- [39]Yeung KH, Dillon JR, Pauzé M, Wallace E: A novel 4.9-kilobase plasmid associated with an outbreak of penicillinase-producing Neisseria gonorrhoeae. J Infect Dis 1986, 153:1162-1165.
- [40]Yeung KH, Dillon JR: In vitro transcription/translation products and molecular characterization of naturally occurring and in vitro deletion of the 7.2 kb plasmid of Neisseria gonorrhoeae. p. 209 215. In The Pathogenic Neisseriae. Proceedings of the 4th international symposium, Asilomar, California, 21 25 October 1984. Edited by Schoolnik GK. Washington, D.C: American Society for Microbiology (ASM); 1985.
- [41]Pagotto F, Dillon JA: Multiple origins and replication proteins influence biological properties of beta-lactamase-producing plasmids from Neisseria gonorrhoeae. J Bacteriol 2001, 183:5472-5481.
- [42]Sparbier K, Schubert S, Weller U, Boogen C, Kostrzewa M: Matrix-assisted laser desorption ionization-time of flight mass spectrometry-based functional assay for rapid detection of resistance against β-lactam antibiotics. J Clin Microbiol 2012, 50:927-937.
- [43]Ambler RP, Coulson AF, Frère JM, Ghuysen JM, Joris B, Forsman M, Levesque RC, Tiraby G, Waley SG: A standard numbering scheme for the class A beta-lactamases. Biochem J 1991, 276:269-270.
- [44]Martin IM, Ison CA, Aanensen DM, Fenton KA, Spratt BG: Rapid sequence-based identification of gonococcal transmission clusters in a large metropolitan area. J Infect Dis 2004, 189:1497-1505.
- [45]Unemo M, Dillon JA: Review and international recommendation of methods for typing Neisseria gonorrhoeae isolates and their implications for improved knowledge of gonococcal epidemiology, treatment, and biology. Clin Microbiol Rev 2011, 24:447-458.
- [46]Unemo M, Sjöstrand A, Akhras M, Gharizadeh B, Lindbäck E, Pourmand N, Wretlind B, Fredlund H: Molecular characterization of Neisseria gonorrhoeae identifies transmission and resistance of one ciprofloxacin-resistant strain. APMIS 2007, 115:231-241.