期刊论文详细信息
BMC Systems Biology
MetaNET - a web-accessible interactive platform for biological metabolic network analysis
Open Source Drug Discovery Consortium2  Andrew Michael Lynn2  Anmol Jaywant Hemrom1  Shawez Khan2  Pankaj Narang2 
[1] School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India;The Open Source Drug Discovery (OSDD) Consortium, Council of Scientific and Industrial Research, Anusandhan Bhavan, 2 Rafi Marg, New Delhi 110001, India
关键词: Perturbation analysis;    in silico gene knock-out;    Systems biology;    Metabolic network;    Flux balance analysis;   
Others  :  1091345
DOI  :  10.1186/s12918-014-0130-2
 received in 2014-07-16, accepted in 2014-11-12,  发布年份 2014
PDF
【 摘 要 】

Background

Metabolic reactions have been extensively studied and compiled over the last century. These have provided a theoretical base to implement models, simulations of which are used to identify drug targets and optimize metabolic throughput at a systemic level. While tools for the perturbation of metabolic networks are available, their applications are limited and restricted as they require varied dependencies and often a commercial platform for full functionality. We have developed MetaNET, an open source user-friendly platform-independent and web-accessible resource consisting of several pre-defined workflows for metabolic network analysis.

Result

MetaNET is a web-accessible platform that incorporates a range of functions which can be combined to produce different simulations related to metabolic networks. These include (i) optimization of an objective function for wild type strain, gene/catalyst/reaction knock-out/knock-down analysis using flux balance analysis. (ii) flux variability analysis (iii) chemical species participation (iv) cycles and extreme paths identification and (v) choke point reaction analysis to facilitate identification of potential drug targets. The platform is built using custom scripts along with the open-source Galaxy workflow and Systems Biology Research Tool as components. Pre-defined workflows are available for common processes, and an exhaustive list of over 50 functions are provided for user defined workflows.

Conclusion

MetaNET, available at http://metanet.osdd.net webcite, provides a user-friendly rich interface allowing the analysis of genome-scale metabolic networks under various genetic and environmental conditions. The framework permits the storage of previous results, the ability to repeat analysis and share results with other users over the internet as well as run different tools simultaneously using pre-defined workflows, and user-created custom workflows.

【 授权许可】

   
2014 Narang et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150428050921101.pdf 292KB PDF download
Figure 7. 87KB Image download
Figure 6. 128KB Image download
Figure 5. 89KB Image download
Figure 4. 91KB Image download
Figure 3. 50KB Image download
Figure 2. 32KB Image download
Figure 1. 100KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

【 参考文献 】
  • [1]Kitano H: Computational systems biology. Nature 2002, 420:206-210.
  • [2]Feist AM, Palsson BO: The growing scope of applications of genome-scale metabolic reconstructions using Escherichia coli. Nat Biotechnol 2008, 26:659-667.
  • [3]Kauffman KJ, Prakash P, Edwards JS: Advances in flux balance analysis. Curr Opin Biotechnol 2003, 14:491-496.
  • [4]Lee JM, Gianchandani EP, Papin JA: Flux balance analysis in the era of metabolomics. Brief Bioinform 2006, 7:140-150.
  • [5]Orth JD, Thiele I, Palsson BØ: What is flux balance analysis? Nat Biotechnol 2010, 28:245-248.
  • [6]Raman K, Chandra N: Flux balance analysis of biological systems: applications and challenges. Brief Bioinform 2009, 10(4):435-449.
  • [7]Varma A, Palsson BO: Stoichiometric flux balance models quantitatively predict growth and metabolic by-product secretion in wild-type Escherichia coli W3110. Appl Environ Microbiol 1994, 60(10):3724-3731.
  • [8]Dandekar T, Fieselmann A, Majeed S, Ahmed Z: Software applications toward quantitative metabolic flux analysis and modeling.Brief Bioinform 2012, doi:10.1093/bib/bbs065.
  • [9]Lakshmanan M, Koh G, Chung BK, Lee DY: Software applications for flux balance analysis. Brief Bioinform 2012, 15:108-122.
  • [10]Schellenberger J, Que R, Fleming RM, Thiele I, Orth JD, Feist AM, Zielinski DC, Bordbar A, Lewis NE, Rahmanian S, Kang J, Hyduke DR, Palsson BO: Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0. Nat Protoc 2011, 6:1290-1307.
  • [11]Von KA, Schuster S: Metatool 5.0: fast and flexible elementary modes analysis. Bioinformatics 2006, 22:1930-1931.
  • [12]Klamt S, Stelling J, Ginkel M, Gilles ED: FluxAnalyzer: exploring structure, pathways, and flux distributions in metabolic networks on interactive flux maps. Bioinformatics 2003, 19:261-269.
  • [13]Lee DY, Yun H, Park S, Lee SY: MetaFluxNet: the management of metabolic reaction information and quantitative metabolic flux analysis. Bioinformatics 2003, 19:2144-2146.
  • [14]Urbanczik R: SNA–a toolbox for the stoichiometric analysis of metabolic networks. BMC Bioinformatics 2006, 7:129. BioMed Central Full Text
  • [15]Klamt S, Saez-Rodriguez J, Gilles ED: Structural and functional analysis of cellular networks with Cell NetAnalyzer. BMC Syst Biol 2007, 1:2. BioMed Central Full Text
  • [16]Schwarz R, Liang C, Kaleta C, Kuhnel M, Hoffmann E, Kuznetsov S, Hecker M, Griffiths G, Schuster S, Dandekar T: Integrated network reconstruction, visualization and analysis using YANAsquare. BMC Bioinformatics 2007, 8:313. BioMed Central Full Text
  • [17]van Oevelen D, Van den Meersche K, Meysman FJR, Soetaert K, Middelburg JJ, Vezina AF: Quantifying food web flows using linear inverse models. Ecosystems 2010, 13:32-45.
  • [18]Gelius DG, Amer DA, Jonathan FC, Lercher M: sybil: efficient constrained based modelling in R. BMC Syst Biol 2013, 7:125. BioMed Central Full Text
  • [19]Gavai AK, Hettling H: BiGGR. [http://www.bioconductor.org/] webciteConstraint based modeling in R using metabolic reconstruction databases. R package version1.2.0 2013. [http://www.bioconductor.org/]
  • [20][http://www.R-project.org/] webcite R Core Team: R: a language and environment for statistical computing. In Vienna, Austria: R Foundation for Statistical Computing; 2014. URL .
  • [21]Wright J, Wagner A: The systems biology research tool: evolvable open-source software. BMC Syst Biol 2008, 2:55. BioMed Central Full Text
  • [22]Boele J, Olivier BG, Teusink B: FAME, the flux analysis and modeling environment. BMC Syst Biol 2012, 6:8. BioMed Central Full Text
  • [23]Feng X, Xu Y, Chen Y, Tang YJ: MicrobesFlux: a web platform for drafting metabolic models from the KEGG database. BMC Syst Biol 2012, 6:94. BioMed Central Full Text
  • [24]Kanehisa M, Goto S: KEGG: Kyoto encyclopedia of genes and genomes. MNucleic Acids Res 2000, 28:27-30.
  • [25]Ebert BE, Lamprecht AL, Steffen B, Blank LM: Flux-P: automating metabolic flux analysis. Metabolites 2012, 2:872-890.
  • [26]Jung TS, Yeo HC, Reddy SG, Cho WS, Lee DY: WEbcoli: an interactive and asynchronous web application for in silico design and analysis of genome-scale E.coli model. Bioinformatics 2009, 25:2850-2852.
  • [27]Ganter M, Bernard T, Moretti S, Stelling J, Pagni M: MetaNETX.org: a website and repository for accessing, analysing and manipulating metabolic networks. Bioinformatics 2013, 29:815-816.
  • [28]Schellenberger J, Park JO, Conrad TM, Palsson BO: BiGG: a Biochemical Genetic and Genomic knowledgebase of large scale metabolic reconstructions. BMC Bioinformatics 2010, 11:213. BioMed Central Full Text
  • [29]Kumar A, Suthers PF, Maranas CD: MetRxn: a knowledgebase of metabolites and reactions spanning metabolic models and databases. BMC Bioinformatics 2012, 13:6. BioMed Central Full Text
  • [30]Giardine B, Riemer C, Hardison RC, Burhans R, Elnitski L, Shah P, Zhang Y, Blankenberg D, Albert I, Taylor J, Miller W, Kent WJ, Nekrutenko A: Galaxy: a platform for interactive large-scale genome analysis. Genome Res 2005, 15:1451-1455.
  • [31]Thiele I, Vo TD, Price ND, Palsson BO: Expanded metabolic reconstruction of Helicobacter pylori (iIT341 GSM/GPR): an in silico genome-scale characterization of single- and double-deletion mutants. J Bacteriol 2005, 187:5818-5830.
  • [32]Hucka M, Finney A, Sauro HM, Bolouri H, Doyle JC, Kitano H, Arkin AP, Bornstein BJ, Bray D, Cornish-Bowden A, Cuellar AA, Dronov S, Gilles ED, Ginkel M, Gor V, Goryanin II, Hedley WJ, Hodgman TC, Hofmeyr JH, Hunter PJ, Juty NS, Kasberger JL, Kremling A, Kummer U, Le NN, Loew LM, Lucio D, Mendes P, Minch E, Mjolsness ED, et al.: The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 2003, 19:524-531.
  • [33]Reed JL, Vo TD, Schilling CH, Palsson BO: An expanded genome-scale model of Escherichia coli K-12 (iJR904 GSM/GPR). Genome Biol 2003, 4:R54. BioMed Central Full Text
  • [34]Rocha I, Maia P, Evangelista P, Vilaça P, Soares S, Pinto JP, Nielsen J, Patil KR, Ferreira EC, Rocha M: OptFlux: an open-source software platform for in silico metabolic engineering. BMC Syst Biol 2010, 4:45. BioMed Central Full Text
  • [35]Hasona A, Kim Y, Healy FG, Ingram LO, Shanmugam KT: Pyruvate formate and acetate kinase are essential for anaerobic growth of Escherichia coli on Xylose. J Bacteriol 2004, 186:7593-7600.
  • [36]Yeh I, Hanekamp T, Tsoka S, Karp PD, Altman RB: Computational analysis of Plasmodium falciparum metabolism: organizing genomic information to facilitate drug discovery. Genome Res 2004, 14:917-924.
  • [37]Rahman SA, Schomburg D: Observing local and global properties of metabolic pathways: ‘load points’ and ‘choke points’ in the metabolic networks. Bioinformatics 2006, 22:1767-1774.
  • [38]Mahadevan R, Schilling CH: The effects of alternate optimal solutions in constraint-based genome-scale metabolic models. Metab Eng 2003, 5:264-276.
  文献评价指标  
  下载次数:77次 浏览次数:15次