期刊论文详细信息
BMC Systems Biology
Source and regulation of flux variability in Escherichia coli
Luis Acerenza1  Héctor Cancela2  Magdalena San Román1 
[1] Systems Biology Laboratory, Faculty of Sciences, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay;Computer Science Institute, Faculty of Engineering, Universidad de la República, Montevideo, Uruguay
关键词: Systems biology;    Evolutionary adaptation;    Physiological adaptation;    Metabolic flexibility;    Flux variability;    Metabolic network;   
Others  :  864955
DOI  :  10.1186/1752-0509-8-67
 received in 2014-02-20, accepted in 2014-06-05,  发布年份 2014
PDF
【 摘 要 】

Background

Metabolic responses are essential for the adaptation of microorganisms to changing environmental conditions. The repertoire of flux responses that the metabolic network can display in different external conditions may be quantified applying flux variability analysis to genome-scale metabolic reconstructions.

Results

A procedure is developed to classify and quantify the sources of flux variability. We apply the procedure to the latest Escherichia coli metabolic reconstruction, in glucose minimal medium, with an additional constraint to account for the mechanism coordinating carbon and nitrogen utilization mediated by α-ketoglutarate. Flux variability can be decomposed into three components: internal, external and growth variability. Unexpectedly, growth variability is the only significant component of flux variability in the physiological ranges of glucose, oxygen and ammonia uptake rates. To obtain substantial increases in metabolic flexibility, E. coli must decrease growth rate to suboptimal values. This growth-flexibility trade-off gives a straightforward interpretation to recent work showing that most overall cell-to-cell flux variability in a population of E. coli can be attained sampling a small number of enzymes most likely to constrain cell growth. Importantly, it provides an explanation for the global reorganization occurring in metabolic networks during adaptations to environmental challenges. The calculations were repeated with a pathogenic strain and an old reconstruction of the commensal strain, having less than 50% of the reactions of the latest reconstruction, obtaining the same general conclusions.

Conclusions

In E. coli growing on glucose, growth variability is the only significant component of flux variability for all physiological conditions explored. Increasing flux variability requires reducing growth to suboptimal values. The growth-flexibility trade-off operates in physiological and evolutionary adaptations, and provides an explanation for the global reorganization occurring during adaptations to environmental challenges. The results obtained do not rely on the knowledge of kinetic and regulatory details of the system and are highly robust to incomplete or incorrect knowledge of the reaction network.

【 授权许可】

   
2014 San Román et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140726022210205.pdf 774KB PDF download
28KB Image download
36KB Image download
51KB Image download
33KB Image download
32KB Image download
43KB Image download
【 图 表 】

【 参考文献 】
  • [1]Edwards JS, Palsson BØ: The Escherichia coli MG1655 in silico metabolic genotype: its definition, characteristics, and capabilities. Proc Natl Acad Sci USA 2000, 97:5528-5533.
  • [2]Edwards JS, Ibarra RU, Palsson BØ: In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data. Nat Biotechnol 2001, 19:125-130.
  • [3]Ibarra RU, Edwards JS, Palsson BØ: Escherichia coli K-12 undergoes adaptive evolution to achieve in silico predicted optimal growth. Nature 2002, 420:186-189.
  • [4]Fischer E, Sauer U: Large-scale in vivo flux analysis shows rigidity and suboptimal performance of Bacillus subtilis metabolism. Nat Genetics 2005, 37:636-640.
  • [5]Stelling J, Klamt S, Bettenbroc K, Schuster S, Gilles ED: Metabolic network structure determines key aspects of functionality and regulation. Nature 2002, 420:190-193.
  • [6]Varma A, Boesch BW, Palsson BØ: Biochemical production capabilities of E. coli. Biotechnol Bioeng 1993, 42:59-73.
  • [7]Cooper VS, Lenski RE: The population genetics of ecological specialization in evolving Escherichia coli populations. Nature 2000, 407:736-739.
  • [8]Lenski RE, Travisano M: Dynamics of adaptation and diversification: a 10,000-generation experiment with bacterial populations. Proc Natl Acad Sci USA 1994, 91:6808-6814.
  • [9]Graña M, Acerenza L: A model combining cell physiology and population genetics to explain Escherichia coli laboratory evolution. BMC Evol Biol 2001, 1:12.
  • [10]Wagner C, Urbanczik R: The geometry of the flux cone of a metabolic network. Biophys J 2005, 89:3837-3845.
  • [11]Moxley JF, Jewett MC, Antoniewicz MR, Villas-Boas SG, Alper H, Wheeler RT, Tong L, Hinnebusch AG, Ideker T, Nielsen J, Stephanopoulos G: Linking high-resolution metabolic flux phenotypes and transcriptional regulation in yeast modulated by the global regulator Gcn4p. Proc Natl Acad Sci USA 2009, 106:6477-6482.
  • [12]Buescher JM, Liebermeister W, Jules M, Uhr M, Muntel J, Botella E, Hessling B, Kleijn RJ, Le Chat L, Lecointe F, Mäder U, Nicolas P, Piersma S, Rügheimer F, Becher D, Bessieres P, Bidnenko E, Denham EL, Dervyn E, Devine KM, Doherty G, Drulhe S, Felicori L, Fogg MJ, Goelzer A, Hansen A, Harwood CR, Hecker M, Hubner S, Hultschig C, et al.: Global network reorganization during dynamic adaptations of Bacillus subtilis metabolism. Science 2012, 335:1099-1103.
  • [13]Jozefczuk S, Klie S, Catchpole G, Szymanski J, Cuadros-Inostroza A, Steinhauser D, Selbig J, Willmitzer L: Metabolomic and transcriptomic stress response of Escherichia coli. Mol Syst Biol 2010, 6:364.
  • [14]Kresnowati MTAP, van Winden WA, Almering MJH, ten Pierick A, Ras C, Knijnenburg TA, Daran-Lapujade P, Pronk JT, Heijnen JJ, Daran JM: When transcriptome meets metabolome: fast cellular responses of yeast to sudden relief of glucose limitation. Mol Syst Biol 2006, 2:49.
  • [15]DeRisi JL, Iyer VR, Brown PO: Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 1997, 278:680-686.
  • [16]Swindell WR, Huebner M, Weber AP: Plastic and adaptive gene expression patterns associated with temperature stress in Arabidopsis thaliana. Heredity 2007, 99:143-150.
  • [17]Mahadevan R, Schilling CH: The effects of alternate optimal solutions in constraint-based genome-scale metabolic models. Metab Eng 2003, 5:264-276.
  • [18]Orth JD, Thiele I, Palsson BØ: What is flux balance analysis? Nat Biotechnol 2010, 28:245-248.
  • [19]Orth JD, Conrad TM, Na J, Lerman JA, Nam H, Feist AM, Palsson BØ: A comprehensive genome-scale reconstruction of Escherichia coli metabolism-2011. Mol Syst Biol 2011, 7:535.
  • [20]Doucette CD, Schwab DJ, Wingreen NS, Rabinowitz JD: α-ketoglutarate coordinates carbon and nitrogen utilization via Enzyme I inhibition. Nat Chem Biol 2012, 7:894-901.
  • [21]Jin DJ, Cagliero C, Zhou YN: Growth rate regulation in Escherichia coli. FEMS Microbiol Rev 2012, 36:269-287.
  • [22]Labhsetwar P, Cole JA, Roberts E, Price ND, Luthey-Schulten ZA: Heterogeneity in protein expression induces metabolic variability in a modeled Escherichia coli population. Proc Natl Acad Sci USA 2013, 110:14006-14011.
  • [23]Chen T, Xie ZW, Ouyang Q: Expanded flux variability analysis on metabolic network of Escherichia coli. Chinese Sci Bull 2009, 54:2610-2619.
  • [24]Traxler MF, Summers SM, Nguyen HT, Zacharia VM, Hightower GA, Smith JT, Conway T: The global, ppGpp-mediated stringent response to amino acid starvation in Escherichia coli. Mol Microbiol 2008, 68:1128-1148.
  • [25]Traxler MF, Zacharia VM, Marquardt S, Summers SM, Nguyen HT, Stark SE, Conway T: Discretely calibrated regulatory loops controlled by ppGpp partition gene induction across the ‘feast to famine’ gradient in Escherichia coli. Mol Microbiol 2011, 79:830-845.
  • [26]Segre D, Vitkup D, Church G: Analysis of optimality in natural and perturbed metabolic networks. Proc Natl Acad Sci USA 2002, 99:15112-15117.
  • [27]Kuepfer L, Sauer U, Blank L: Metabolic functions of duplicate genes in Saccharomyces cerevisiae. Genome Res 2005, 15:1421-1430.
  • [28]Schuetz R, Zamboni N, Zampieri M, Heinemann M, Sauer U: Multidimensional optimality of microbial metabolism. Science 2012, 336:601-604.
  • [29]Cashel M, Gentry DR, Hernández VJ, Vinella D: The stringent response. In Escherichia Coli and Salmonella, Volume 1. Edited by Neidhardt FC. Washington DC: ASM Press; 1996:1458-1496.
  • [30]Levy S, Barkai N: Coordination of gene expression with growth rate: a feedback or a feed-forward strategy? FEBS Letters 2009, 583:3974-3978.
  • [31]Taniguchi Y, Choi PJ, Li GW, Chen H, Babu M, Hearn J, Emili A, Xie XS: Quantifying E. coli proteome and transcriptome with single molecule sensitivity in single cells. Science 2010, 329:533-538.
  • [32]Schuetz R, Kuepfer L, Sauer U: Systematic evaluation of objective functions for predicting intracellular fluxes in Escherichia coli. Mol Syst Biol 2007, 3:119.
  • [33]Wilke CO, Wang J, Ofria C, Lenski RE, Adami C: Evolution of digital organisms at high mutation rate leads to survival of the flattest. Nature 2001, 412:331-333.
  • [34]Beardmore RE, Gudelj I, Lipson DA, Hurst LD: Metabolic trade-offs and the maintenance of the fittest and the flattest. Nature 2011, 472:342-346.
  • [35]Wagner A: Robustness and Evolvability in Living Systems. Princeton: Princeton University Press; 2005.
  • [36]Lenski RE, Barrick JE, Ofria C: Balancing robustness and evolvability. PLoS Biol 2006, 4(12):e428.
  • [37]Blount ZD, Borland CZ, Lenski RE: Historical contingency and the evolution of a key innovation in an experimental population of Escherichia coli. Proc Natl Acad Sci USA 2008, 105:7899-7906.
  • [38]Blount ZD, Barrick JE, Davidson CJ, Lenski RE: Genomic analysis of a key innovation in an experimental E. coli population. Nature 2012, 489:513-518.
  • [39]Baumler DJ, Peplinski RG, Reed JL, Glasner JD, Perna NT: The evolution of metabolic networks of E. coli. BMC Syst Biol 2011, 5:182.
  • [40]Monk JM, Charusanti P, Aziz RK, Lerman JA, Premyodhin N, Orth JD, Feist AM, Palsson BØ: Genome-scale metabolic reconstructions of multiple Escherichia coli strains highlight strain-specific adaptations to nutritional environments. Proc Natl Acad Sci USA 2013, 110:20338-20343.
  • [41]Reed JL, Vo TD, Schilling CH, Palsson BØ: An expanded genome-scale model of Escherichia coli K-12 (iJR904 GSM/GPR). Genome Biol 2003, 4:R54.
  • [42]Feist AM, Henry CS, Reed JL, Krummenacker M, Joyce AR, Karp PD, Broadbelt LJ, Hatzimanikatis V, Palsson BØ: A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information. Mol Syst Biol 2007, 3:121.
  文献评价指标  
  下载次数:103次 浏览次数:35次