BMC Neuroscience | |
Human area MT+ shows load-dependent activation during working memory maintenance with continuously morphing stimulation | |
Manfred Herrmann2  Andreas K Kreiter1  Thorsten Fehr3  Daniela Galashan2  | |
[1] Institute of Brain Research, University of Bremen, Bremen, Germany;Center for Advanced Imaging (CAI), University of Bremen, Bremen, Germany;Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany | |
关键词: Retention; V5; hMT; Human; fMRI; | |
Others : 1091832 DOI : 10.1186/1471-2202-15-85 |
|
received in 2014-05-13, accepted in 2014-07-07, 发布年份 2014 | |
【 摘 要 】
Background
Initially, human area MT+ was considered a visual area solely processing motion information but further research has shown that it is also involved in various different cognitive operations, such as working memory tasks requiring motion-related information to be maintained or cognitive tasks with implied or expected motion.
In the present fMRI study in humans, we focused on MT+ modulation during working memory maintenance using a dynamic shape-tracking working memory task with no motion-related working memory content. Working memory load was systematically varied using complex and simple stimulus material and parametrically increasing retention periods. Activation patterns for the difference between retention of complex and simple memorized stimuli were examined in order to preclude that the reported effects are caused by differences in retrieval.
Results
Conjunction analysis over all delay durations for the maintenance of complex versus simple stimuli demonstrated a wide-spread activation pattern. Percent signal change (PSC) in area MT+ revealed a pattern with higher values for the maintenance of complex shapes compared to the retention of a simple circle and with higher values for increasing delay durations.
Conclusions
The present data extend previous knowledge by demonstrating that visual area MT+ presents a brain activity pattern usually found in brain regions that are actively involved in working memory maintenance.
【 授权许可】
2014 Galashan et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150128174544327.pdf | 1887KB | download | |
Figure 4. | 1929KB | Image | download |
Figure 3. | 50KB | Image | download |
Figure 2. | 43KB | Image | download |
Figure 1. | 47KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
【 参考文献 】
- [1]Allman JM, Kaas JH: A representation of the visual field in the caudal third of the middle tempral gyrus of the owl monkey (Aotus trivirgatus). Brain Res 1971, 31(1):85-105.
- [2]Zeki S, Watson JD, Lueck CJ, Friston KJ, Kennard C, Frackowiak RS: A direct demonstration of functional specialization in human visual cortex. J Neurosci 1991, 11(3):641-649.
- [3]Downing PE, Wiggett AJ, Peelen MV: Functional magnetic resonance imaging investigation of overlapping lateral occipitotemporal activations using multi-voxel pattern analysis. J Neurosci 2007, 27(1):226-233.
- [4]Kourtzi Z, Bülthoff HH, Erb M, Grodd W: Object-selective responses in the human motion area MT/MST. Nat Neurosci 2002, 5(1):17-18.
- [5]Shelton AL, Pippitt HA: Motion in the mind’s eye: comparing mental and visual rotation. Cogn Affect Behav Neurosci 2006, 6(4):323-332.
- [6]Goebel R, Khorram-Sefat D, Muckli L, Hacker H, Singer W: The constructive nature of vision: direct evidence from functional magnetic resonance imaging studies of apparent motion and motion imagery. Eur J Neurosci 1998, 10(5):1563-1573.
- [7]Kourtzi Z, Kanwisher N: Activation in human MT/MST by static images with implied motion. J Cogn Neurosci 2000, 12(1):48-55.
- [8]Coventry KR, Christophel TB, Fehr T, Valdes-Conroy B, Herrmann M: Multiple routes to mental animation: language and functional relations drive motion processing for static images. Psychol Sci 2013, 24(8):1379-1388.
- [9]McKeefry DJ, Burton MP, Vakrou C: Speed selectivity in visual short term memory for motion. Vision Res 2007, 47(18):2418-2425.
- [10]Bisley JW, Zaksas D, Droll JA, Pasternak T: Activity of neurons in cortical area MT during a memory for motion task. J Neurophysiol 2004, 91(1):286-300.
- [11]Umla-Runge K, Zimmer HD, Krick CM, Reith W: fMRI correlates of working memory: specific posterior representation sites for motion and position information. Brain Res 2011, 1382:206-218.
- [12]Funahashi S, Bruce CJ, Goldman-Rakic PS: Mnemonic coding of visual space in the monkey’s dorsolateral prefrontal cortex. J Neurophysiol 1989, 61(2):331-349.
- [13]Chafee MV, Goldman-Rakic PS: Matching patterns of activity in primate prefrontal area 8a and parietal area 7ip neurons during a spatial working memory task. J Neurophysiol 1998, 79(6):2919-2940.
- [14]Miyashita Y, Chang HS: Neuronal correlate of pictorial short-term memory in the primate temporal cortex. Nature 1988, 331(6151):68-70.
- [15]Miller EK, Li L, Desimone R: Activity of neurons in anterior inferior temporal cortex during a short-term memory task. J Neurosci 1993, 13(4):1460-1478.
- [16]Constantinidis C, Steinmetz MA: Neuronal activity in posterior parietal area 7a during the delay periods of a spatial memory task. J Neurophysiol 1996, 76(2):1352-1355.
- [17]Postle BR, Druzgal TJ, D’Esposito M: Seeking the neural substrates of visual working memory storage. Cortex 2003, 39(4–5):927-946.
- [18]Miller EK, Cohen JD: An integrative theory of prefrontal cortex function. Annu Rev Neurosci 2001, 24:167-202.
- [19]Fuster JM: The prefrontal cortex-an update: time is of the essence. Neuron 2001, 30(2):319-333.
- [20]Postle BR: Working memory as an emergent property of the mind and brain. Neuroscience 2006, 139(1):23-38.
- [21]Linden DEJ, Bittner RA, Muckli L, Waltz JA, Kriegeskorte N, Goebel R, Singer W, Munk MHJ: Cortical capacity constraints for visual working memory: dissociation of fMRI load effects in a fronto-parietal network. Neuroimage 2003, 20(3):1518-1530.
- [22]Eng HY, Chen D, Jiang Y: Visual working memory for simple and complex visual stimuli. Psychon Bull Rev 2005, 12(6):1127-1133.
- [23]Barch DM, Braver TS, Nystrom LE, Forman SD, Noll DC, Cohen JD: Dissociating working memory from task difficulty in human prefrontal cortex. Neuropsychologia 1997, 35(10):1373-1380.
- [24]Oldfield RC: The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 1971, 9(1):97-113.
- [25]Rickham PP: Human Experimentation. Code Of Ethics Of The World Medical Association. Declaration Of Helsinki. Br Med J 1964, 2(5402):177.
- [26]Taylor K, Mandon S, Freiwald WA, Kreiter AK: Coherent oscillatory activity in monkey area v4 predicts successful allocation of attention. Cereb Cortex 2005, 15(9):1424-1437.
- [27]Della-Maggiore V, Chau W, Peres-Neto PR, McIntosh AR: An empirical comparison of SPM preprocessing parameters to the analysis of fMRI data. Neuroimage 2002, 17(1):19-28.
- [28]Friston KJ, Holmes AP, Price CJ, Büchel C, Worsley KJ: Multisubject fMRI studies and conjunction analyses. Neuroimage 1999, 10(4):385-396.
- [29]Johnstone T, Ores Walsh KS, Greischar LL, Alexander AL, Fox AS, Davidson RJ, Oakes TR: Motion correction and the use of motion covariates in multiple-subject fMRI analysis. Hum Brain Mapp 2006, 27(10):779-788.
- [30]Holmes AP, Friston KJ: Generalisability, random effects and population inference. Neuroimage 1998, 7:S754.
- [31]Nichols T, Brett M, Andersson J, Wager T, Poline JB: Valid conjunction inference with the minimum statistic. Neuroimage 2005, 25(3):653-660.
- [32]Benjamini Y, Hochberg Y: Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Statistical Society Series B 1995, 57(1):289-300.
- [33]Genovese CR, Lazar NA, Nichols T: Thresholding of statistical maps in functional neuroimaging using the false discovery rate. Neuroimage 2002, 15(4):870-878.
- [34]Brett M, Johnsrude IS, Owen AM: The problem of functional localization in the human brain. Nat Rev Neurosci 2002, 3(3):243-249.
- [35]Wilms M, Eickhoff SB, Specht K, Amunts K, Shah NJ, Malikovic A, Fink GR: Human V5/MT+: comparison of functional and cytoarchitectonic data. Anat Embryol (Berl) 2005, 210(5–6):485-495.
- [36]Watson JD, Myers R, Frackowiak RS, Hajnal JV, Woods RP, Mazziotta JC, Shipp S, Zeki S: Area V5 of the human brain: evidence from a combined study using positron emission tomography and magnetic resonance imaging. Cereb Cortex 1993, 3(2):79-94.
- [37]Brett M, Anton JL, Valabregue R, Poline JB: Region of interest analysis using an SPM toolbox. Sendai, Japan; 2002. [presented at the 8th international conference on functional mapping of the human brain]. Neuroimage 16(2):Abstract 497.
- [38]Cairo TA, Liddle PF, Woodward TS, Ngan ETC: The influence of working memory load on phase specific patterns of cortical activity. Brain Res Cogn Brain Res 2004, 21(3):377-387.
- [39]Druzgal TJ, D’Esposito M: Dissecting contributions of prefrontal cortex and fusiform face area to face working memory. J Cogn Neurosci 2003, 15(6):771-784.
- [40]Manoach DS, Greve DN, Lindgren KA, Dale AM: Identifying regional activity associated with temporally separated components of working memory using event-related functional MRI. Neuroimage 2003, 20(3):1670-1684.
- [41]Owen AM, McMillan KM, Laird AR, Bullmore E: N-back working memory paradigm: a meta-analysis of normative functional neuroimaging studies. Hum Brain Mapp 2005, 25(1):46-59.
- [42]Zarahn E, Rakitin B, Abela D, Flynn J, Stern Y: Positive evidence against human hippocampal involvement in working memory maintenance of familiar stimuli. Cereb Cortex 2005, 15(3):303-316.
- [43]Gazzaley A, Rissman J, D’Esposito M: Functional connectivity during working memory maintenance. Cogn Affect Behav Neurosci 2004, 4(4):580-599.
- [44]Bisley JW, Zaksas D, Pasternak T: Microstimulation of cortical area MT affects performance on a visual working memory task. J Neurophysiol 2001, 85(1):187-196.
- [45]Treue S, Maunsell JH: Attentional modulation of visual motion processing in cortical areas MT and MST. Nature 1996, 382(6591):539-541.
- [46]Wegener D, Freiwald WA, Kreiter AK: The influence of sustained selective attention on stimulus selectivity in macaque visual area MT. J Neurosci 2004, 24(27):6106-6114.
- [47]Herrington J, Nymberg C, Faja S, Price E, Schultz R: The responsiveness of biological motion processing areas to selective attention towards goals. Neuroimage 2012, 63(1):581-590.
- [48]Chawla D, Rees G, Friston KJ: The physiological basis of attentional modulation in extrastriate visual areas. Nat Neurosci 1999, 2(7):671-676.
- [49]O’Craven KM, Rosen BR, Kwong KK, Treisman A, Savoy RL: Voluntary attention modulates fMRI activity in human MT-MST. Neuron 1997, 18(4):591-598.
- [50]Kayser AS, Erickson DT, Buchsbaum BR, D’Esposito M: Neural representations of relevant and irrelevant features in perceptual decision making. J Neurosci 2010, 30(47):15778-15789.
- [51]Denys K, Vanduffel W, Fize D, Nelissen K, Peuskens H, Van Essen D, Orban GA: The processing of visual shape in the cerebral cortex of human and nonhuman primates: a functional magnetic resonance imaging study. J Neurosci 2004, 24(10):2551-2565.
- [52]Sereno ME, Trinath T, Augath M, Logothetis NK: Three-dimensional shape representation in monkey cortex. Neuron 2002, 33(4):635-652.
- [53]Vanduffel W, Fize D, Peuskens H, Denys K, Sunaert S, Todd JT, Orban GA: Extracting 3D from motion: differences in human and monkey intraparietal cortex. Science 2002, 298(5592):413-415.
- [54]O’Craven KM, Downing PE, Kanwisher N: fMRI evidence for objects as the units of attentional selection. Nature 1999, 401(6753):584-587.
- [55]Schoenfeld MA, Tempelmann C, Martinez A, Hopf JM, Sattler C, Heinze HJ, Hillyard SA: Dynamics of feature binding during object-selective attention. Proc Natl Acad Sci U S A 2003, 100(20):11806-11811.
- [56]Sohn W, Papathomas TV, Blaser E, Vidnyanszky Z: Object-based cross-feature attentional modulation from color to motion. Vision Res 2004, 44(12):1437-1443.
- [57]Liu T, Mance I: Constant spread of feature-based attention across the visual field. Vision Res 2011, 51(1):26-33.
- [58]Katzner S, Busse L, Treue S: Attention to the color of a moving stimulus modulates motion-signal processing in macaque Area MT: evidence for a unified attentional system. Front Syst Neurosci 2009, 3:12.
- [59]Lavie N, Hirst A, de Fockert JW, Viding E: Load theory of selective attention and cognitive control. J Exp Psychol Gen 2004, 133(3):339-354.
- [60]de Fockert JW, Rees G, Frith CD, Lavie N: The role of working memory in visual selective attention. Science 2001, 291(5509):1803-1806.
- [61]Riggall AC, Postle BR: The relationship between working memory storage and elevated activity as measured with functional magnetic resonance imaging. J Neurosci 2012, 32(38):12990-12998.