BMC Cell Biology | |
SNF8, a member of the ESCRT-II complex, interacts with TRPC6 and enhances its channel activity | |
Johannes Schlöndorff1  Anna Greka1  Martin R Pollak1  Sneha Krishna1  Dequan Tian1  Robert Carrasquillo1  | |
[1] Harvard Medical School, Boston, MA, 02115, USA | |
关键词: Calcineurin-NFAT signaling; Protein-protein interaction; Calcium channel; Transient receptor potential; | |
Others : 856656 DOI : 10.1186/1471-2121-13-33 |
|
received in 2012-07-10, accepted in 2012-10-23, 发布年份 2012 | |
【 摘 要 】
Background
Transient receptor potential canonical (TRPC) channels are non-selective cation channels involved in receptor-mediated calcium signaling in diverse cells and tissues. The canonical transient receptor potential 6 (TRPC6) has been implicated in several pathological processes, including focal segmental glomerulosclerosis (FSGS), cardiac hypertrophy, and pulmonary hypertension. The two large cytoplasmic segments of the cation channel play a critical role in the proper regulation of channel activity, and are involved in several protein-protein interactions.
Results
Here we report that SNF8, a component of the endosomal sorting complex for transport-II (ESCRT-II) complex, interacts with TRPC6. The interaction was initially observed in a yeast two-hybrid screen using the amino-terminal cytoplasmic domain of TRPC6 as bait, and confirmed by co-immunoprecipitation from eukaryotic cell extracts. The amino-terminal 107 amino acids are necessary and sufficient for the interaction. Overexpression of SNF8 enhances both wild-type and gain-of-function mutant TRPC6-mediated whole-cell currents in HEK293T cells. Furthermore, activation of NFAT-mediated transcription by gain-of-function mutants is enhanced by overexpression of SNF8, and partially inhibited by RNAi mediated knockdown of SNF8. Although the ESCRT-II complex functions in the endocytosis and lysosomal degradation of transmembrane proteins, SNF8 overexpression does not alter the amount of TRPC6 present on the cell surface.
Conclusion
SNF8 is novel binding partner of TRPC6, binding to the amino-terminal cytoplasmic domain of the channel. Modulating SNF8 expression levels alters the TRPC6 channel current and can modulate activation of NFAT-mediated transcription downstream of gain-of-function mutant TRPC6. Taken together, these results identify SNF8 as a novel regulator of TRPC6.
【 授权许可】
2012 Carrasquillo et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20140723035159501.pdf | 1499KB | download | |
52KB | Image | download | |
22KB | Image | download | |
29KB | Image | download | |
96KB | Image | download | |
50KB | Image | download | |
84KB | Image | download | |
61KB | Image | download | |
21KB | Image | download |
【 图 表 】
【 参考文献 】
- [1]Montell C: The TRP superfamily of cation channels. Sci STKE 2005, 2005(272):re3.
- [2]Hofmann T, Schaefer M, Schultz G, Gudermann T: Subunit composition of mammalian transient receptor potential channels in living cells. Proc Natl Acad Sci U S A 2002, 99(11):7461-7466.
- [3]Vazquez G, Wedel BJ, Aziz O, Trebak M, Putney JW Jr: The mammalian TRPC cation channels. Biochim Biophys Acta 2004, 1742(1–3):21-36.
- [4]Kim EY, Alvarez-Baron CP, Dryer SE: Canonical transient receptor potential channel (TRPC)3 and TRPC6 associate with large-conductance Ca2+-activated K+ (BKCa) channels: role in BKCa trafficking to the surface of cultured podocytes. Mol Pharmacol 2009, 75(3):466-477.
- [5]Boulay G: Ca(2+)-calmodulin regulates receptor-operated Ca(2+) entry activity of TRPC6 in HEK-293 cells. Cell Calcium 2002, 32(4):201-207.
- [6]Kwon Y, Hofmann T, Montell C: Integration of phosphoinositide- and calmodulin-mediated regulation of TRPC6. Mol Cell 2007, 25(4):491-503.
- [7]Tang J, Lin Y, Zhang Z, Tikunova S, Birnbaumer L, Zhu MX: Identification of common binding sites for calmodulin and inositol 1,4,5-trisphosphate receptors on the carboxyl termini of trp channels. J Biol Chem 2001, 276(24):21303-21310.
- [8]Sinkins WG, Goel M, Estacion M, Schilling WP: Association of immunophilins with mammalian TRPC channels. J Biol Chem 2004, 279(33):34521-34529.
- [9]Hisatsune C, Kuroda Y, Nakamura K, Inoue T, Nakamura T, Michikawa T, Mizutani A, Mikoshiba K: Regulation of TRPC6 channel activity by tyrosine phosphorylation. J Biol Chem 2004, 279(18):18887-18894.
- [10]Boulay G, Brown DM, Qin N, Jiang M, Dietrich A, Zhu MX, Chen Z, Birnbaumer M, Mikoshiba K, Birnbaumer L: Modulation of Ca(2+) entry by polypeptides of the inositol 1,4, 5-trisphosphate receptor (IP3R) that bind transient receptor potential (TRP): evidence for roles of TRP and IP3R in store depletion-activated Ca(2+) entry. Proc Natl Acad Sci U S A 1999, 96(26):14955-14960.
- [11]Lussier MP, Cayouette S, Lepage PK, Bernier CL, Francoeur N, St-Hilaire M, Pinard M, Boulay G: MxA, a member of the dynamin superfamily, interacts with the ankyrin-like repeat domain of TRPC. J Biol Chem 2005, 280(19):19393-19400.
- [12]Goel M, Sinkins W, Keightley A, Kinter M, Schilling WP: Proteomic analysis of TRPC5- and TRPC6-binding partners reveals interaction with the plasmalemmal Na(+)/K(+)-ATPase. Pflugers Arch 2005, 451(1):87-98.
- [13]Kanda S, Harita Y, Shibagaki Y, Sekine T, Igarashi T, Inoue T, Hattori S: Tyrosine phosphorylation-dependent activation of TRPC6 regulated by PLC-gamma1 and nephrin: effect of mutations associated with focal segmental glomerulosclerosis. Mol Biol Cell 2011, 22(11):1824-1835.
- [14]Huber TB, Schermer B, Muller RU, Hohne M, Bartram M, Calixto A, Hagmann H, Reinhardt C, Koos F, Kunzelmann K, et al.: Podocin and MEC-2 bind cholesterol to regulate the activity of associated ion channels. Proc Natl Acad Sci U S A 2006, 103(46):17079-17086.
- [15]Reiser J, Polu KR, Moller CC, Kenlan P, Altintas MM, Wei C, Faul C, Herbert S, Villegas I, Avila-Casado C, et al.: TRPC6 is a glomerular slit diaphragm-associated channel required for normal renal function. Nat Genet 2005, 37(7):739-744.
- [16]Kini V, Chavez A, Mehta D: A new role for PTEN in regulating transient receptor potential canonical channel 6-mediated Ca2+ entry, endothelial permeability, and angiogenesis. J Biol Chem 2010, 285(43):33082-33091.
- [17]Lussier MP, Lepage PK, Bousquet SM, Boulay G: RNF24, a new TRPC interacting protein, causes the intracellular retention of TRPC. Cell Calcium 2008, 43(5):432-443.
- [18]Shi J, Mori E, Mori Y, Mori M, Li J, Ito Y, Inoue R: Multiple regulation by calcium of murine homologues of transient receptor potential proteins TRPC6 and TRPC7 expressed in HEK293 cells. J Physiol 2004, 561(Pt 2):415-432.
- [19]Kim JY, Saffen D: Activation of M1 muscarinic acetylcholine receptors stimulates the formation of a multiprotein complex centered on TRPC6 channels. J Biol Chem 2005, 280(36):32035-32047.
- [20]Takahashi S, Lin H, Geshi N, Mori Y, Kawarabayashi Y, Takami N, Mori MX, Honda A, Inoue R: Nitric oxide-cGMP-protein kinase G pathway negatively regulates vascular transient receptor potential channel TRPC6. J Physiol 2008, 586(Pt 17):4209-4223.
- [21]Bousquet SM, Monet M, Boulay G: Protein kinase C-dependent phosphorylation of transient receptor potential canonical 6 (TRPC6) on serine 448 causes channel inhibition. J Biol Chem 2010, 285(52):40534-40543.
- [22]Lemonnier L, Trebak M, Putney JW Jr: Complex regulation of the TRPC3, 6 and 7 channel subfamily by diacylglycerol and phosphatidylinositol-4,5-bisphosphate. Cell Calcium 2008, 43(5):506-514.
- [23]Monet M, Francoeur N, Boulay G: Involvement of Phosphoinositide 3-Kinase and PTEN Protein in Mechanism of Activation of TRPC6 Protein in Vascular Smooth Muscle Cells. J Biol Chem 2012, 287(21):17672-17681.
- [24]Winn MP, Conlon PJ, Lynn KL, Farrington MK, Creazzo T, Hawkins AF, Daskalakis N, Kwan SY, Ebersviller S, Burchette JL, et al.: A mutation in the TRPC6 cation channel causes familial focal segmental glomerulosclerosis. Science 2005, 308(5729):1801-1804.
- [25]Moller CC, Wei C, Altintas MM, Li J, Greka A, Ohse T, Pippin JW, Rastaldi MP, Wawersik S, Schiavi S, et al.: Induction of TRPC6 channel in acquired forms of proteinuric kidney disease. J Am Soc Nephrol 2007, 18(1):29-36.
- [26]Wang Z, Wei X, Zhang Y, Ma X, Li B, Zhang S, Du P, Zhang X, Yi F: NADPH oxidase-derived ROS contributes to upregulation of TRPC6 expression in puromycin aminonucleoside-induced podocyte injury. Cell Physiol Biochem 2009, 24(5–6):619-626.
- [27]Eckel J, Lavin PJ, Finch EA, Mukerji N, Burch J, Gbadegesin R, Wu G, Bowling B, Byrd A, Hall G, et al.: TRPC6 enhances angiotensin II-induced albuminuria. J Am Soc Nephrol 2011, 22(3):526-535.
- [28]Heeringa SF, Moller CC, Du J, Yue L, Hinkes B, Chernin G, Vlangos CN, Hoyer PF, Reiser J, Hildebrandt F: A novel TRPC6 mutation that causes childhood FSGS. PLoS One 2009, 4(11):e7771.
- [29]Zhu B, Chen N, Wang ZH, Pan XX, Ren H, Zhang W, Wang WM: Identification and functional analysis of a novel TRPC6 mutation associated with late onset familial focal segmental glomerulosclerosis in Chinese patients. Mutat Res 2009, 664(1–2):84-90.
- [30]Onohara N, Nishida M, Inoue R, Kobayashi H, Sumimoto H, Sato Y, Mori Y, Nagao T, Kurose H: TRPC3 and TRPC6 are essential for angiotensin II-induced cardiac hypertrophy. EMBO J 2006, 25(22):5305-5316.
- [31]Kuwahara K, Wang Y, McAnally J, Richardson JA, Bassel-Duby R, Hill JA, Olson EN: TRPC6 fulfills a calcineurin signaling circuit during pathologic cardiac remodeling. J Clin Invest 2006, 116(12):3114-3126.
- [32]Weissmann N, Dietrich A, Fuchs B, Kalwa H, Ay M, Dumitrascu R, Olschewski A, Storch U, Mederos y Schnitzler M, Ghofrani HA, et al.: Classical transient receptor potential channel 6 (TRPC6) is essential for hypoxic pulmonary vasoconstriction and alveolar gas exchange. Proc Natl Acad Sci U S A 2006, 103(50):19093-19098.
- [33]Weissmann N, Sydykov A, Kalwa H, Storch U, Fuchs B, Mederos y Schnitzler M, Brandes RP, Grimminger F, Meissner M, Freichel M, et al.: Activation of TRPC6 channels is essential for lung ischaemia-reperfusion induced oedema in mice. Nat Commun 2012, 3:649.
- [34]Paez Espinosa EV, Murad JP, Ting HJ, Khasawneh FT: Mouse transient receptor potential channel 6: role in hemostasis and thrombogenesis. Biochem Biophys Res Commun 2012, 417(2):853-856.
- [35]Babst M, Katzmann DJ, Snyder WB, Wendland B, Emr SD: Endosome-associated complex, ESCRT-II, recruits transport machinery for protein sorting at the multivesicular body. Dev Cell 2002, 3(2):283-289.
- [36]Malerod L, Stuffers S, Brech A, Stenmark H: Vps22/EAP30 in ESCRT-II mediates endosomal sorting of growth factor and chemokine receptors destined for lysosomal degradation. Traffic 2007, 8(11):1617-1629.
- [37]Raiborg C, Stenmark H: The ESCRT machinery in endosomal sorting of ubiquitylated membrane proteins. Nature 2009, 458(7237):445-452.
- [38]Schlondorff J, Del Camino D, Carrasquillo R, Lacey V, Pollak MR: TRPC6 mutations associated with focal segmental glomerulosclerosis cause constitutive activation of NFAT-dependent transcription. Am J Physiol Cell Physiol 2009, 296(3):C558-C569.
- [39]Hanson PI, Shim S, Merrill SA: Cell biology of the ESCRT machinery. Curr Opin Cell Biol 2009, 21(4):568-574.
- [40]Wollert T, Yang D, Ren X, Lee HH, Im YJ, Hurley JH: The ESCRT machinery at a glance. J Cell Sci 2009, 122(Pt 13):2163-2166.
- [41]Bezzerides VJ, Ramsey IS, Kotecha S, Greka A, Clapham DE: Rapid vesicular translocation and insertion of TRP channels. Nat Cell Biol 2004, 6(8):709-720.
- [42]Cayouette S, Lussier MP, Mathieu EL, Bousquet SM, Boulay G: Exocytotic insertion of TRPC6 channel into the plasma membrane upon Gq protein-coupled receptor activation. J Biol Chem 2004, 279(8):7241-7246.
- [43]Logg K, Warringer J, Hashemi SH, Kall M, Blomberg A: The sodium pump Ena1p provides mechanistic insight into the salt sensitivity of vacuolar protein sorting mutants. Biochim Biophys Acta 2008, 1783(6):974-984.
- [44]Aires V, Hichami A, Boulay G, Khan NA: Activation of TRPC6 calcium channels by diacylglycerol (DAG)-containing arachidonic acid: a comparative study with DAG-containing docosahexaenoic acid. Biochimie 2007, 89(8):926-937.
- [45]Brazer SC, Singh BB, Liu X, Swaim W, Ambudkar IS: Caveolin-1 contributes to assembly of store-operated Ca2+ influx channels by regulating plasma membrane localization of TRPC1. J Biol Chem 2003, 278(29):27208-27215.
- [46]Brownlow SL, Sage SO: Transient receptor potential protein subunit assembly and membrane distribution in human platelets. Thromb Haemost 2005, 94(4):839-845.
- [47]Kwiatek AM, Minshall RD, Cool DR, Skidgel RA, Malik AB, Tiruppathi C: Caveolin-1 regulates store-operated Ca2+ influx by binding of its scaffolding domain to transient receptor potential channel-1 in endothelial cells. Mol Pharmacol 2006, 70(4):1174-1183.
- [48]Lockwich TP, Liu X, Singh BB, Jadlowiec J, Weiland S, Ambudkar IS: Assembly of Trp1 in a signaling complex associated with caveolin-scaffolding lipid raft domains. J Biol Chem 2000, 275(16):11934-11942.
- [49]Murata T, Lin MI, Stan RV, Bauer PM, Yu J, Sessa WC: Genetic evidence supporting caveolae microdomain regulation of calcium entry in endothelial cells. J Biol Chem 2007, 282(22):16631-16643.
- [50]Pani B, Singh BB: Lipid rafts/caveolae as microdomains of calcium signaling. Cell Calcium 2009, 45(6):625-633.
- [51]Jardin I, Salido GM, Rosado JA: Role of lipid rafts in the interaction between hTRPC1, Orai1 and STIM1. Channels (Austin) 2008, 2(6):401-403.
- [52]Pani B, Ong HL, Liu X, Rauser K, Ambudkar IS, Singh BB: Lipid rafts determine clustering of STIM1 in endoplasmic reticulum-plasma membrane junctions and regulation of store-operated Ca2+ entry (SOCE). J Biol Chem 2008, 283(25):17333-17340.
- [53]Sundivakkam PC, Kwiatek AM, Sharma TT, Minshall RD, Malik AB, Tiruppathi C: Caveolin-1 scaffold domain interacts with TRPC1 and IP3R3 to regulate Ca2+ store release-induced Ca2+ entry in endothelial cells. Am J Physiol Cell Physiol 2009, 296(3):C403-C413.
- [54]Alicia S, Angelica Z, Carlos S, Alfonso S, Vaca L: STIM1 converts TRPC1 from a receptor-operated to a store-operated channel: moving TRPC1 in and out of lipid rafts. Cell Calcium 2008, 44(5):479-491.
- [55]Pani B, Ong HL, Brazer SC, Liu X, Rauser K, Singh BB, Ambudkar IS: Activation of TRPC1 by STIM1 in ER-PM microdomains involves release of the channel from its scaffold caveolin-1. Proc Natl Acad Sci U S A 2009, 106(47):20087-20092.
- [56]Mellgren RL: Detergent-resistant membrane subfractions containing proteins of plasma membrane, mitochondrial, and internal membrane origins. J Biochem Biophys Methods 2008, 70(6):1029-1036.
- [57]Langelier C, von Schwedler UK, Fisher RD, De Domenico I, White PL, Hill CP, Kaplan J, Ward D, Sundquist WI: Human ESCRT-II complex and its role in human immunodeficiency virus type 1 release. J Virol 2006, 80(19):9465-9480.
- [58]Herz HM, Woodfield SE, Chen Z, Bolduc C, Bergmann A: Common and distinct genetic properties of ESCRT-II components in Drosophila. PLoS One 2009, 4(1):e4165.
- [59]Vaccari T, Rusten TE, Menut L, Nezis IP, Brech A, Stenmark H, Bilder D: Comparative analysis of ESCRT-I, ESCRT-II and ESCRT-III function in Drosophila by efficient isolation of ESCRT mutants. J Cell Sci 2009, 122(Pt 14):2413-2423.
- [60]Hanson PI, Roth R, Lin Y, Heuser JE: Plasma membrane deformation by circular arrays of ESCRT-III protein filaments. J Cell Biol 2008, 180(2):389-402.
- [61]Im YJ, Wollert T, Boura E, Hurley JH: Structure and function of the ESCRT-II-III interface in multivesicular body biogenesis. Dev Cell 2009, 17(2):234-243.
- [62]Saksena S, Wahlman J, Teis D, Johnson AE, Emr SD: Functional reconstitution of ESCRT-III assembly and disassembly. Cell 2009, 136(1):97-109.
- [63]Pincetic A, Leis J: The Mechanism of Budding of Retroviruses From Cell Membranes. Adv Virol 2009, 2009:6239691-6239699.
- [64]McDonald B, Martin-Serrano J: No strings attached: the ESCRT machinery in viral budding and cytokinesis. J Cell Sci 2009, 122(Pt 13):2167-2177.
- [65]Irion U, St Johnston D: Bicoid RNA localization requires specific binding of an endosomal sorting complex. Nature 2007, 445(7127):554-558.
- [66]Schmidt AE, Miller T, Schmidt SL, Shiekhattar R, Shilatifard A: Cloning and characterization of the EAP30 subunit of the ELL complex that confers derepression of transcription by RNA polymerase II. J Biol Chem 1999, 274(31):21981-21985.
- [67]Medina G, Pincetic A, Ehrlich LS, Zhang Y, Tang Y, Leis J, Carter CA: Tsg101 can replace Nedd4 function in ASV Gag release but not membrane targeting. Virology 2008, 377(1):30-38.
- [68]Spassova MA, Hewavitharana T, Xu W, Soboloff J, Gill DL: A common mechanism underlies stretch activation and receptor activation of TRPC6 channels. Proc Natl Acad Sci U S A 2006, 103(44):16586-16591.
- [69]Gottlieb P, Folgering J, Maroto R, Raso A, Wood TG, Kurosky A, Bowman C, Bichet D, Patel A, Sachs F, et al.: Revisiting TRPC1 and TRPC6 mechanosensitivity. Pflugers Arch 2008, 455(6):1097-1103.
- [70]Wollert T, Hurley JH: Molecular mechanism of multivesicular body biogenesis by ESCRT complexes. Nature 2010, 464(7290):864-869.
- [71]Progida C, Spinosa MR, De Luca A, Bucci C: RILP interacts with the VPS22 component of the ESCRT-II complex. Biochem Biophys Res Commun 2006, 347(4):1074-1079.