| BMC Systems Biology | |
| Lessons from the modular organization of the transcriptional regulatory network of Bacillus subtilis | |
| Rosa-María Gutiérrez-Ríos2  Ernesto Perez-Rueda3  Mario Martinez-Nuñez2  Enrique Merino2  Alejandra M Manjarrez-Casas2  Julio A Freyre-González1  | |
| [1] Programa de Genómica Evolutiva, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad s/n,Col. Chamilpa, Cuernavaca, Morelos 62210, México;Departamentos de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca, Morelos 62250, México;Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca, Morelos 62250, México | |
| 关键词: Paralogous proteins; Model organisms; Regulatory network; Hierarchy; Modularity; σ factors; Master regulators; | |
| Others : 1141712 DOI : 10.1186/1752-0509-7-127 |
|
| received in 2013-07-04, accepted in 2013-11-12, 发布年份 2013 | |
PDF
|
|
【 摘 要 】
Background
The regulation of gene expression at the transcriptional level is a fundamental process in prokaryotes. Among the different kind of mechanisms modulating gene transcription, the one based on DNA binding transcription factors, is the most extensively studied and the results, for a great number of model organisms, have been compiled making it possible the in silico construction of their corresponding transcriptional regulatory networks and the analysis of the biological relationships of the components of these intricate networks, that allows to elucidate the significant aspects of their organization and evolution.
Results
We present a thorough review of each regulatory element that constitutes the transcriptional regulatory network of Bacillus subtilis. For facilitating the discussion, we organized the network in topological modules. Our study highlight the importance of σ factors, some of them acting as master regulators which characterize modules by inter- or intra-connecting them and play a key role in the cascades that define relevant cellular processes in this organism. We discussed that some particular functions were distributed in more than one module and that some modules contained more than one related function. We confirm that the presence of paralogous proteins confers advantages to B. subtilis to adapt and select strategies to successfully face the extreme and changing environmental conditions in which it lives.
Conclusions
The intricate organization is the product of a non-random network evolution that primarily follows a hierarchical organization based on the presence of transcription and σ factor, which is reflected in the connections that exist within and between modules.
【 授权许可】
2013 Freyre-González et al.; licensee BioMed Central Ltd.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20150327113920579.pdf | 1517KB | ||
| Figure 6. | 96KB | Image | |
| Figure 5. | 64KB | Image | |
| Figure 4. | 71KB | Image | |
| Figure 3. | 43KB | Image | |
| Figure 2. | 66KB | Image | |
| Figure 1. | 43KB | Image |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
【 参考文献 】
- [1]Sierro N, Makita Y, de Hoon M, Nakai K: DBTBS: a database of transcriptional regulation in Bacillus subtilis containing upstream intergenic conservation information. Nucleic Acids Res 2008, 36:D93-D96.
- [2]Girvan M, Newman ME: Community structure in social and biological networks. Proc Natl Acad Sci USA 2002, 99:7821-7826.
- [3]Rives AW, Galitski T: Modular organization of cellular networks. Proc Natl Acad Sci USA 2003, 100:1128-1133.
- [4]Guelzim N, Bottani S, Bourgine P, Kepes F: Topological and causal structure of the yeast transcriptional regulatory network. Nat Genet 2002, 31:60-63.
- [5]Jothi R, Balaji S, Wuster A, Grochow JA, Gsponer J, Przytycka TM, Aravind L, Babu MM: Genomic analysis reveals a tight link between transcription factor dynamics and regulatory network architecture. Mol Syst Biol 2009, 5:294.
- [6]Resendis-Antonio O, Freyre-Gonzalez JA, Menchaca-Mendez R, Gutierrez-Rios RM, Martinez-Antonio A, Avila-Sanchez C, Collado-Vides J: Modular analysis of the transcriptional regulatory network of E. coli. Trends Genet 2005, 21:16-20.
- [7]Shen-Orr SS, Milo R, Mangan S, Alon U: Network motifs in the transcriptional regulation network of Escherichia coli. Nat Genet 2002, 31:64-68.
- [8]Albert R: Scale-free networks in cell biology. J Cell Sci 2005, 118:4947-4957.
- [9]Harbison CT, Gordon DB, Lee TI, Rinaldi NJ, Macisaac KD, Danford TW, Hannett NM, Tagne JB, Reynolds DB, Yoo J, Jennings EG, Zeitlinger J, Pokholok DK, Kellis M, Rolfe PA, Takusagawa KT, Lander ES, Gifford DK, Fraenkel E, Young RA: Transcriptional regulatory code of a eukaryotic genome. Nature 2004, 431:99-104.
- [10]Luscombe NM, Babu MM, Yu H, Snyder M, Teichmann SA, Gerstein M: Genomic analysis of regulatory network dynamics reveals large topological changes. Nature 2004, 431:308-312.
- [11]Balazsi G, Barabasi AL, Oltvai ZN: Topological units of environmental signal processing in the transcriptional regulatory network of Escherichia coli. Proc Natl Acad Sci USA 2005, 102:7841-7846.
- [12]Balazsi G, Heath AP, Shi L, Gennaro ML: The temporal response of the Mycobacterium tuberculosis gene regulatory network during growth arrest. Mol Syst Biol 2008, 4:225.
- [13]Rosvall M, Bergstrom CT: Maps of random walks on complex networks reveal community structure. Proc Natl Acad Sci USA 2008, 105:1118-1123.
- [14]Freyre-Gonzalez JA, Trevino-Quintanilla LG, Valtierra-Gutierrez IA, Gutierrez-Rios RM, Alonso-Pavon JA: Prokaryotic regulatory systems biology: common principles governing the functional architectures of bacillus subtilis and escherichia coli unveiled by the natural decomposition approach. J Biotechnol 2012, 161:278-286.
- [15]Doroshchuk NA, Gel’fand MS, Rodionov DA: Regulation of nitrogen metabolism in gram-positive bacteria. Mol Biol (Mosk) 2006, 40:919-926.
- [16]Wang L, Grau R, Perego M, Hoch JA: A novel histidine kinase inhibitor regulating development in Bacillus subtilis. Genes Dev 1997, 11:2569-2579.
- [17]Turner RJ, Lu Y, Switzer RL: Regulation of the Bacillus subtilis pyrimidine biosynthetic (pyr) gene cluster by an autogenous transcriptional attenuation mechanism. J Bacteriol 1994, 176:3708-3722.
- [18]Bera AK, Zhu J, Zalkin H, Smith JL: Functional dissection of the Bacillus subtilis pur operator site. J Bacteriol 2003, 185:4099-4109.
- [19]Smith E, Morowitz HJ: Universality in intermediary metabolism. Proc Natl Acad Sci USA 2004, 101:13168-13173.
- [20]Hyyrylainen HL, Bolhuis A, Darmon E, Muukkonen L, Koski P, Vitikainen M, Sarvas M, Pragai Z, Bron S, van Dijl JM, Kontinen VP: A novel two-component regulatory system in Bacillus subtilis for the survival of severe secretion stress. Mol Microbiol 2001, 41:1159-1172.
- [21]Pang AS, Nathoo S, Wong SL: Cloning and characterization of a pair of novel genes that regulate production of extracellular enzymes in Bacillus subtilis. J Bacteriol 1991, 173:46-54.
- [22]Nakano MM, Zuber P: Anaerobic growth of a “strict aerobe” (Bacillus subtilis). Annu Rev Microbiol 1998, 52:165-190.
- [23]Fujita Y, Fujita T, Miwa Y, Nihashi J, Aratani Y: Organization and transcription of the gluconate operon, gnt, of Bacillus subtilis. J Biol Chem 1986, 261:13744-13753.
- [24]Yamamoto H, Serizawa M, Thompson J, Sekiguchi J: Regulation of the glv operon in bacillus subtilis: YfiA (GlvR) is a positive regulator of the operon that is repressed through CcpA and cre. J Bacteriol 2001, 183:5110-5121.
- [25]Kallio PT, Fagelson JE, Hoch JA, Strauch MA: The transition state regulator Hpr of Bacillus subtilis is a DNA-binding protein. J Biol Chem 1991, 266:13411-13417.
- [26]Kim HJ, Jourlin-Castelli C, Kim SI, Sonenshein AL: Regulation of the bacillus subtilis ccpC gene by ccpA and ccpC. Mol Microbiol 2002, 43:399-410.
- [27]Eichenberger P, Fujita M, Jensen ST, Conlon EM, Rudner DZ, Wang ST, Ferguson C, Haga K, Sato T, Liu JS, Losick R: The program of gene transcription for a single differentiating cell type during sporulation in Bacillus subtilis. PLoS Biol 2004, 2:e328.
- [28]Kroos L, Zhang B, Ichikawa H, Yu YT: Control of sigma factor activity during Bacillus subtilis sporulation. Mol Microbiol 1999, 31:1285-1294.
- [29]Lopez D, Vlamakis H, Kolter R: Generation of multiple cell types in Bacillus subtilis. FEMS Microbiol Rev 2009, 33:152-163.
- [30]Petersohn A, Brigulla M, Haas S, Hoheisel JD, Volker U, Hecker M: Global analysis of the general stress response of Bacillus subtilis. J Bacteriol 2001, 183:5617-5631.
- [31]Martinez-Nunez MA, Perez-Rueda E, Gutierrez-Rios RM, Merino E: New insights into the regulatory networks of paralogous genes in bacteria. Microbiology 2010, 156:14-22.
- [32]Brown NL, Stoyanov JV, Kidd SP, Hobman JL: The MerR family of transcriptional regulators. FEMS Microbiol Rev 2003, 27:145-163.
- [33]Zalieckas JM, Wray LV Jr, Fisher SH: Cross-regulation of the Bacillus subtilis glnRA and tnrA genes provides evidence for DNA binding site discrimination by GlnR and TnrA. J Bacteriol 2006, 188:2578-2585.
- [34]Nourmohammad A, Lassig M: Formation of regulatory modules by local sequence duplication. PLoS Comput Biol 2011, 7:e1002167.
- [35]Singh LN, Hannenhalli S: Correlated changes between regulatory cis elements and condition-specific expression in paralogous gene families. Nucleic Acids Res 2010, 38:738-749.
- [36]Sawers G, Kaiser M, Sirko A, Freundlich M: Transcriptional activation by FNR and CRP: reciprocity of binding-site recognition. Mol Microbiol 1997, 23:835-845.
- [37]Tanay A, Regev A, Shamir R: Conservation and evolvability in regulatory networks: the evolution of ribosomal regulation in yeast. Proc Natl Acad Sci USA 2005, 102:7203-7208.
- [38]Teichmann SA, Babu MM: Gene regulatory network growth by duplication. Nat Genet 2004, 36:492-496.
- [39]Saxild HH, Nygaard P: Genetic and physiological characterization of Bacillus subtilis mutants resistant to purine analogs. J Bacteriol 1987, 169:2977-2983.
- [40]Sinha SC, Krahn J, Shin BS, Tomchick DR, Zalkin H, Smith JL: The purine repressor of Bacillus subtilis: a novel combination of domains adapted for transcription regulation. J Bacteriol 2003, 185:4087-4098.
- [41]Serizawa M, Kodama K, Yamamoto H, Kobayashi K, Ogasawara N, Sekiguchi J: Functional analysis of the YvrGHb two-component system of Bacillus subtilis: identification of the regulated genes by DNA microarray and northern blot analyses. Biosci Biotechnol Biochem 2005, 69:2155-2169.
- [42]Conant GC, Wagner A: Convergent evolution of gene circuits. Nat Genet 2003, 34:264-266.
- [43]Lawhorn BG, Gerdes SY, Begley TP: A genetic screen for the identification of thiamin metabolic genes. J Biol Chem 2004, 279:43555-43559.
- [44]Fabret C, Feher VA, Hoch JA: Two-component signal transduction in Bacillus subtilis: how one organism sees its world. J Bacteriol 1999, 181:1975-1983.
- [45]Birkey SM, Liu W, Zhang X, Duggan MF, Hulett FM: Pho signal transduction network reveals direct transcriptional regulation of one two-component system by another two-component regulator: bacillus subtilis PhoP directly regulates production of ResD. Mol Microbiol 1998, 30:943-953.
- [46]Whitworth DE, Cock PJ: Evolution of prokaryotic two-component systems: insights from comparative genomics. Amino Acids 2009, 37:459-466.
- [47]Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U: Network motifs: simple building blocks of complex networks. Science 2002, 298:824-827.
- [48]Cordero OX, Hogeweg P: Feed-forward loop circuits as a side effect of genome evolution. Mol Biol Evol 2006, 23:1931-1936.
- [49]Freyre-Gonzalez JA, Alonso-Pavon JA, Trevino-Quintanilla LG, Collado-Vides J: Functional architecture of Escherichia coli: new insights provided by a natural decomposition approach. Genome Biol 2008, 9:R154. BioMed Central Full Text
- [50]Mazurie A, Bottani S, Vergassola M: An evolutionary and functional assessment of regulatory network motifs. Genome Biol 2005, 6:R35. BioMed Central Full Text
- [51]Sole RV, Valverde S: Are network motifs the spandrels of cellular complexity? Trends Ecol Evol 2006, 21:419-422.
- [52]Macia J, Widder S, Sole R: Specialized or flexible feed-forward loop motifs: a question of topology. BMC Syst Biol 2009, 3:84. BioMed Central Full Text
- [53]Mangan S, Alon U: Structure and function of the feed-forward loop network motif. Proc Natl Acad Sci USA 2003, 100:11980-11985.
- [54]Wall ME, Dunlop MJ, Hlavacek WS: Multiple functions of a feed-forward-loop gene circuit. J Mol Biol 2005, 349:501-514.
- [55]Ingram PJ, Stumpf MP, Stark J: Network motifs: structure does not determine function. BMC Genomics 2006, 7:108. BioMed Central Full Text
- [56]de Hoon MJ, Eichenberger P, Vitkup D: Hierarchical evolution of the bacterial sporulation network. Curr Biol 2010, 20:R735-R745.
- [57]Dobrin R, Beg QK, Barabasi AL, Oltvai ZN: Aggregation of topological motifs in the Escherichia coli transcriptional regulatory network. BMC Bioinformatics 2004, 5:10. BioMed Central Full Text
- [58]Wang L, Perpich J, Driks A, Kroos L: One perturbation of the mother cell gene regulatory network suppresses the effects of another during sporulation of Bacillus subtilis. J Bacteriol 2007, 189:8467-8473.
- [59]Ryu HB, Shin I, Yim HS, Kang SO: YlaC is an extracytoplasmic function (ECF) sigma factor contributing to hydrogen peroxide resistance in Bacillus subtilis. J Microbiol 2006, 44:206-216.
- [60]Schulz A, Schumann W: hrcA, the first gene of the Bacillus subtilis dnaK operon encodes a negative regulator of class I heat shock genes. J Bacteriol 1996, 178:1088-1093.
- [61]Homuth G, Heinemann M, Zuber U, Schumann W: The genes of lepA and hemN form a bicistronic operon in Bacillus subtilis. Microbiology 1996, 142(Pt 7):1641-1649.
- [62]Homuth G, Masuda S, Mogk A, Kobayashi Y, Schumann W: The dnaK operon of Bacillus subtilis is heptacistronic. J Bacteriol 1997, 179:1153-1164.
- [63]Hippler B, Homuth G, Hoffmann T, Hungerer C, Schumann W, Jahn D: Characterization of Bacillus subtilis hemN. J Bacteriol 1997, 179:7181-7185.
- [64]Magos L, Kovacs G: Compensatory changes in respiration against resistance. Acta Physiol Hung 1956, 9:223-230.
- [65]Homuth G, Rompf A, Schumann W, Jahn D: Transcriptional control of Bacillus subtilis hemN and hemZ. J Bacteriol 1999, 181:5922-5929.
- [66]Micka B, Marahiel MA: The DNA-binding protein HBsu is essential for normal growth and development in Bacillus subtilis. Biochimie 1992, 74:641-650.
- [67]Kumarevel T: Structural insights of HutP-mediated regulation of transcription of the hut operon in Bacillus subtilis. Biophys Chem 2007, 128:1-12.
- [68]Hecker M, Pane-Farre J, Volker U: SigB-dependent general stress response in Bacillus subtilis and related gram-positive bacteria. Annu Rev Microbiol 2007, 61:215-236.
- [69]Schumann W: The Bacillus subtilis heat shock stimulon. Cell Stress Chaperones 2003, 8:207-217.
- [70]Derre I, Rapoport G, Msadek T: CtsR, a novel regulator of stress and heat shock response, controls clp and molecular chaperone gene expression in gram-positive bacteria. Mol Microbiol 1999, 31:117-131.
- [71]Kruger E, Hecker M: The first gene of the Bacillus subtilis clpC operon, ctsR, encodes a negative regulator of its own operon and other class III heat shock genes. J Bacteriol 1998, 180:6681-6688.
- [72]Hecker M, Schumann W, Volker U: Heat-shock and general stress response in Bacillus subtilis. Mol Microbiol 1996, 19:417-428.
- [73]Darmon E, Noone D, Masson A, Bron S, Kuipers OP, Devine KM, van Dijl JM: A novel class of heat and secretion stress-responsive genes is controlled by the autoregulated CssRS two-component system of Bacillus subtilis. J Bacteriol 2002, 184:5661-5671.
- [74]Babu MM: Early Career Research Award Lecture. Structure, evolution and dynamics of transcriptional regulatory networks. Biochem Soc Trans 2010, 38:1155-1178.
- [75]Gutierrez-Rios RM, Rosenblueth DA, Loza JA, Huerta AM, Glasner JD, Blattner FR, Collado-Vides J: Regulatory network of Escherichia coli: consistency between literature knowledge and microarray profiles. Genome Res 2003, 13:2435-2443.
- [76]Yu H, Gerstein M: Genomic analysis of the hierarchical structure of regulatory networks. Proc Natl Acad Sci USA 2006, 103:14724-14731.
- [77]Gama-Castro S, Salgado H, Peralta-Gil M, Santos-Zavaleta A, Muniz-Rascado L, Solano-Lira H, Jimenez-Jacinto V, Weiss V, Garcia-Sotelo JS, Lopez-Fuentes A, Porron-Sotelo L, Alquicira-Hernandez S, Medina-Rivera A, Martinez-Flores I, Alquicira-Hernandez K, Martinez-Adame R, Bonavides-Martinez C, Miranda-Rios J, Huerta AM, Mendoza-Vargas A, Collado-Torres L, Taboada B, Vega-Alvarado L, Olvera M, Olvera L, Grande R, Morett E, Collado-Vides J: RegulonDB version 7.0: transcriptional regulation of Escherichia coli K-12 integrated within genetic sensory response units (Gensor Units). Nucleic Acids Res 2011, 39:D98-105.
- [78]Salgado H, Peralta-Gil M, Gama-Castro S, Santos-Zavaleta A, Muniz-Rascado L, Garcia-Sotelo JS, Weiss V, Solano-Lira H, Martinez-Flores I, Medina-Rivera A, Salgado-Osorio G, Alquicira-Hernandez S, Alquicira-Hernandez K, Lopez-Fuentes A, Porron-Sotelo L, Huerta AM, Bonavides-Martinez C, Balderas-Martinez YI, Pannier L, Olvera M, Labastida A, Jimenez-Jacinto V, Vega-Alvarado L, Del Moral-Chavez V, Hernandez-Alvarez A, Morett E, Collado-Vides J: RegulonDB v8.0: omics data sets, evolutionary conservation, regulatory phrases, cross-validated gold standards and more. Nucleic Acids Res 2013, 41:D203-D213.
- [79]Rohde KH, Veiga DF, Caldwell S, Balazsi G, Russell DG: Linking the transcriptional profiles and the physiological states of Mycobacterium tuberculosis during an extended intracellular infection. PLoS Pathog 2012, 8:e1002769.
- [80]Balaji S, Babu MM, Iyer LM, Luscombe NM, Aravind L: Comprehensive analysis of combinatorial regulation using the transcriptional regulatory network of yeast. J Mol Biol 2006, 360:213-227.
- [81]Eisen MB, Spellman PT, Brown PO, Botstein D: Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 1998, 95:14863-14868.
PDF