期刊论文详细信息
BMC Research Notes
Implementation of Cloud based Next Generation Sequencing data analysis in a clinical laboratory
Bharat Thyagarajan3  Kevin A T Silverstein2  Matthew Bower5  Matthew Schomaker5  Sophia Yohe3  Adam Hauge4  Kenneth B Beckman4  John Chilton1  Michael D Spears3  Jesse Erdmann2  Getiria Onsongo2 
[1] Applications Development, Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, USA;Research Informatics Support Systems, Minnesota Supercomputing Institute, University of Minnesota, Room 599 Walter Library 117 Pleasant St SE, Minneapolis, MN 55455, USA;Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, USA;University of Minnesota Genomics Center, University of Minnesota, Minneapolis, USA;Molecular Diagnostics Laboratory, University of Minnesota Medical Center Fairview, Minneapolis, USA
关键词: Molecular diagnostics;    Variant detection;    Cloud computing;    Next generation sequencing;   
Others  :  1132698
DOI  :  10.1186/1756-0500-7-314
 received in 2013-09-30, accepted in 2014-05-06,  发布年份 2014
PDF
【 摘 要 】

Background

The introduction of next generation sequencing (NGS) has revolutionized molecular diagnostics, though several challenges remain limiting the widespread adoption of NGS testing into clinical practice. One such difficulty includes the development of a robust bioinformatics pipeline that can handle the volume of data generated by high-throughput sequencing in a cost-effective manner. Analysis of sequencing data typically requires a substantial level of computing power that is often cost-prohibitive to most clinical diagnostics laboratories.

Findings

To address this challenge, our institution has developed a Galaxy-based data analysis pipeline which relies on a web-based, cloud-computing infrastructure to process NGS data and identify genetic variants. It provides additional flexibility, needed to control storage costs, resulting in a pipeline that is cost-effective on a per-sample basis. It does not require the usage of EBS disk to run a sample.

Conclusions

We demonstrate the validation and feasibility of implementing this bioinformatics pipeline in a molecular diagnostics laboratory. Four samples were analyzed in duplicate pairs and showed 100% concordance in mutations identified. This pipeline is currently being used in the clinic and all identified pathogenic variants confirmed using Sanger sequencing further validating the software.

【 授权许可】

   
2014 Onsongo et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150304045507199.pdf 569KB PDF download
Figure 2. 71KB Image download
Figure 1. 77KB Image download
【 图 表 】

Figure 1.

Figure 2.

【 参考文献 】
  • [1]Crona J, Verdugo AD, Granberg D, Welin S, Stalberg P, Hellman P, Bjorklund P: Next-generation sequencing in the clinical genetic screening of patients with pheochromocytoma and paraganglioma. Endocr Connect 2013, 2:104-111.
  • [2]Valencia CA, Ankala A, Rhodenizer D, Bhide S, Littlejohn MR, Keong LM, Rutkowski A, Sparks S, Bonnemann C, Hegde M: Comprehensive mutation analysis for congenital muscular dystrophy: a clinical PCR-based enrichment and next-generation sequencing panel. PLoS One 2013, 8:e53083.
  • [3]Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA Jr, Kinzler KW: Cancer genome landscapes. Science 2013, 339:1546-1558.
  • [4]Singh RR, Patel KP, Routbort MJ, Reddy NG, Barkoh BA, Handal B, Kanagal-Shamanna R, Greaves WO, Medeiros LJ, Aldape KD, Luthra R: Clinical validation of a Next-Generation Sequencing screen for mutational hotspots in 46 cancer-related genes. J Mol Diagn 2013. advance online publication, 25 June 2013; pii: S1525–S1578(13) 00090-1; doi:10.1016/j.jmoldx.2013.05.003 (e-pub ahead of print)
  • [5]Spencer DH, Abel HJ, Lockwood CM, Payton JE, Szankasi P, Kelley TW, Kulkarni S, Pfeifer JD, Duncavage EJ: Detection of FLT3 internal tandem duplication in targeted, short-read-length, next-generation sequencing data. J Mol Diagn 2013, 15:81-93.
  • [6]Salipante SJ, Sengupta DJ, Rosenthal C, Costa G, Spangler J, Sims EH, Jacobs MA, Miller SI, Hoogestraat DR, Cookson BT, McCoy C, Matsen FA, Shendure J, Lee CC, Harkins TT, Hoffman NG: Rapid 16S rRNA next-generation sequencing of polymicrobial clinical samples for diagnosis of complex bacterial infections. PLoS One 2013, 8:e65226.
  • [7]Blankenberg D, Von Kuster G, Coraor N, Ananda G, Lazarus R, Mangan M, Nekrutenko A, Taylor J: Galaxy: a web-based genome analysis tool for experimentalists. Current Protoc Mol Biol 2010, Chapter 19:Unit 19.10.1–21. edited by Frederick M Ausubel [et al.]
  • [8]Giardine B, Riemer C, Hardison RC, Burhans R, Elnitski L, Shah P, Zhang Y, Blankenberg D, Albert I, Taylor J, Miller W, Kent WJ, Nekrutenko A: Galaxy: a platform for interactive large-scale genome analysis. Genome Res 2005, 15:1451-1455.
  • [9]Goecks J, Nekrutenko A, Taylor J, Galaxy T: Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biol 2010, 11:R86. BioMed Central Full Text
  • [10]Afgan E, Baker D, Coraor N, Chapman B, Nekrutenko A, Taylor J: Galaxy CloudMan: delivering cloud compute clusters. BMC Bioinformatics 2010, 11:S4.
  • [11]Krampis K, Booth T, Chapman B, Tiwari B, Bicak M, Field D, Nelson KE: Cloud BioLinux: pre-configured and on-demand bioinformatics computing for the genomics community. BMC Bioinformatics 2012, 13:42. BioMed Central Full Text
  • [12]Afgan E, Chapman B, Jadan M, Franke V, Taylor J: Using cloud computing infrastructure with CloudBioLinux, CloudMan, and Galaxy. Current Protoc Bioinformatics 2012, Chapter 11:Unit11.19. editoral board, Andreas D Baxevanis [et al.]
  • [13]Angiuoli SV, Matalka M, Gussman A, Galens K, Vangala M, Riley DR, Arze C, White JR, White O, Fricke WF: CloVR: a virtual machine for automated and portable sequence analysis from the desktop using cloud computing. BMC Bioinformatics 2011, 12:356. BioMed Central Full Text
  • [14]Medicare, Medicaid and CLIA programs; regulations implementing the Clinical Laboratory Improvement Amendments of 1988 (CLIA)--HCFA. Final rule with comment period Fed Regist 1992, 57:7002-7186.
  • [15]Jennings L, Van Deerlin VM, Gulley ML: College of American Pathologists Molecular Pathology Resource C: Recommended principles and practices for validating clinical molecular pathology tests. Arch Pathol Lab Med 2009, 133:743-755.
  • [16]Robinson JT, Thorvaldsdottir H, Winckler W, Guttman M, Lander ES, Getz G, Mesirov JP: Integrative genomics viewer. Nat Biotechnol 2011, 29:24-26.
  • [17]Thorvaldsdottir H, Robinson JT, Mesirov JP: Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform 2013, 14:178-192.
  • [18]Yohe S, Hauge A, Bunjer K, Kemmer T, Bower M, Schomaker M, Onsongo G, Wilson J, Erdmann J, Zhou Y, Deshpande A, Spears M, Beckman KB, Silverstein KAT, Thyagarajan B: Clinical validation of targeted next generation sequencing for inherited disorders. Arch Pathol Lab Medin press
  • [19]Sloggett C, Goonasekera N, Afgan E: BioBlend: automating pipeline analyses within Galaxy and CloudMan. Bioinformatics 2013, 29:1685-1686.
  • [20]Langmead B, Schatz MC, Lin J, Pop M, Salzberg SL: Searching for SNPs with cloud computing. Genome Biol 2009, 10:R134. BioMed Central Full Text
  文献评价指标  
  下载次数:8次 浏览次数:12次