期刊论文详细信息
BMC Genomics
Comparative genomics of the Bifidobacterium breve taxon
Douwe van Sinderen1  Marco Ventura3  Christian Riedel5  Daria Zhurina5  Aldert Zomer2  Gabriele Andrea Lugli3  Francesca Turroni1  Christian Milani3  Sabrina Duranti3  Fausta Serafini3  Kerry Joan O’Connell1  Justin Kuczynski4  Mary O’Connell Motherway1  Francesca Bottacini1 
[1] Alimentary Pharmabiotic Centre and Department of Microbiology, Bioscience Institute, National University of Ireland, Western Road, Cork, Ireland;Centre for Molecular and Biomolecular Informatics, Nijmegen Centre for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands;Laboratory of Probiogenomics, Department of Life Sciences, University of Parma, Parma, Italy;Second Genome, Bioinformatics Department, San Bruno, CA, USA;Institute of Microbiology and Biotechnology, University of Ulm, Ulm, Germany
关键词: Pan-genome;    Dispensable genome;    Core genome;    Evolutionary genomics;    Bifidobacterium breve;   
Others  :  1217826
DOI  :  10.1186/1471-2164-15-170
 received in 2013-09-16, accepted in 2014-02-19,  发布年份 2014
PDF
【 摘 要 】

Background

Bifidobacteria are commonly found as part of the microbiota of the gastrointestinal tract (GIT) of a broad range of hosts, where their presence is positively correlated with the host’s health status. In this study, we assessed the genomes of thirteen representatives of Bifidobacterium breve, which is not only a frequently encountered component of the (adult and infant) human gut microbiota, but can also be isolated from human milk and vagina.

Results

In silico analysis of genome sequences from thirteen B. breve strains isolated from different environments (infant and adult faeces, human milk, human vagina) shows that the genetic variability of this species principally consists of hypothetical genes and mobile elements, but, interestingly, also genes correlated with the adaptation to host environment and gut colonization. These latter genes specify the biosynthetic machinery for sortase-dependent pili and exopolysaccharide production, as well as genes that provide protection against invasion of foreign DNA (i.e. CRISPR loci and restriction/modification systems), and genes that encode enzymes responsible for carbohydrate fermentation. Gene-trait matching analysis showed clear correlations between known metabolic capabilities and characterized genes, and it also allowed the identification of a gene cluster involved in the utilization of the alcohol-sugar sorbitol.

Conclusions

Genome analysis of thirteen representatives of the B. breve species revealed that the deduced pan-genome exhibits an essentially close trend. For this reason our analyses suggest that this number of B. breve representatives is sufficient to fully describe the pan-genome of this species. Comparative genomics also facilitated the genetic explanation for differential carbon source utilization phenotypes previously observed in different strains of B. breve.

【 授权许可】

   
2014 Bottacini et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150708112343345.pdf 6687KB PDF download
Figure 5. 133KB Image download
Figure 4. 115KB Image download
Figure 3. 59KB Image download
Figure 2. 179KB Image download
Figure 1. 101KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Ventura M, O’Flaherty S, Claesson MJ, Turroni F, Klaenhammer TR, van Sinderen D, O’Toole PW: Genome-scale analyses of health-promoting bacteria: probiogenomics. Nat Rev Microbiol 2009, 7:61-71.
  • [2]Ventura M, Turroni F, van Sinderen D: Probiogenomics as a tool to obtain genetic insights into adaptation of probiotic bacteria to the human gut. Bioeng Bugs 2012., 3doi:10.4161/bbug.18540
  • [3]Turroni F, Ventura M, Butto LF, Duranti S, O’Toole PW, Motherway MO, van Sinderen D: Molecular dialogue between the human gut microbiota and the host: a Lactobacillus and Bifidobacterium perspective. Cell Mol Life Sci 2013, 71:183-203.
  • [4]Ventura M, Canchaya C, Tauch A, Chandra G, Fitzgerald GF, Chater KF, van Sinderen D: Genomics of Actinobacteria: tracing the evolutionary history of an ancient phylum. Microbiol Mol Biol Rev 2007, 71:495-548.
  • [5]Turroni F, van Sinderen D, Ventura M: Genomics and ecological overview of the genus Bifidobacterium. Int J Food Microbiol 2011, 149:37-44.
  • [6]Turroni F, Peano C, Pass DA, Foroni E, Severgnini M, Claesson MJ, Kerr C, Hourihane J, Murray D, Fuligni F, Gueimonde M, Margolles A, De Bellis G, O’Toole PW, Van Sinderen D, Marchesi JR, Ventura M: Diversity of Bifidobacteria within the Infant Gut Microbiota. PLoS One 2012, 7:e36957.
  • [7]Sela DA, Chapman J, Adeuya A, Kim JH, Chen F, Whitehead TR, Lapidus A, Rokhsar DS, Lebrilla CB, German JB, Prince NP, Richardson PM, Mills DA: The genome sequence of Bifidobacterium longum subsp. infantis reveals adaptations for milk utilization within the infant microbiome. Proc Natl Acad Sci USA 2008, 105:18964-18969.
  • [8]O’Connell Motherway M, Zomer A, Leahy SC, Reunanen J, Bottacini F, Claesson MJ, O’Brien F, Flynn K, Casey PG, Munoz JA, Kearney B, Houston AM, O’Mahony C, Higgins DG, Shanahan F, Palva A, de Vos WM, Fitzgerald GF, Ventura M, O’Toole PW, van Sinderen D: Functional genome analysis of Bifidobacterium breve UCC2003 reveals type IVb tight adherence (Tad) pili as an essential and conserved host-colonization factor. Proc Natl Acad Sci USA 2011, 108:11217-11222.
  • [9]Turroni F, Serafini F, Foroni E, Duranti S, O’Connell Motherway M, Taverniti V, Mangifesta M, Milani C, Viappiani A, Roversi T, Sánchez B, Santoni A, Gioiosa L, Ferrarini A, Delledonne M, Margolles A, Piazza L, Palanza P, Bolchi A, Guglielmetti S, van Sinderen D, Ventura M: Role of sortase-dependent pili of Bifidobacterium bifidum PRL2010 in modulating bacterium-host interactions. Proc Natl Acad Sci USA 2013, 110:11151-11156.
  • [10]Tettelin H, Masignani V, Cieslewicz MJ, Donati C, Medini D, Ward NL, Angiuoli SV, Crabtree J, Jones AL, Durkin AS, Deboy RT, Davidsen TM, Mora M, Scarselli M, Margarit y Ros I, Peterson JD, Hauser CR, Sundaram JP, Nelson WC, Madupu R, Brinkac LM, Dodson RJ, Rosovitz MJ, Sullivan SA, Daugherty SC, Haft DH, Selengut J, Gwinn ML, Zhou L, Zafar N, et al.: Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial “pan-genome”. Proc Natl Acad Sci USA 2005, 102:13950-13955.
  • [11]Medini D, Donati C, Tettelin H, Masignani V, Rappuoli R: The microbial pan-genome. Curr Opin Genet Dev 2005, 15:589-594.
  • [12]Bottacini F, Medini D, Pavesi A, Turroni F, Foroni E, Riley D, Giubellini V, Tettelin H, van Sinderen D, Ventura M: Comparative genomics of the genus Bifidobacterium. Microbiology 2010, 156:3243-3254.
  • [13]Ventura M, Turroni F, Zomer A, Foroni E, Giubellini V, Bottacini F, Canchaya C, Claesson MJ, He F, Mantzourani M, Mulas L, Ferrarini A, Gao B, Delledonne M, Henrissat B, Coutinho P, Oggioni M, Gupta RS, Zhang Z, Beighton D, Fitzgerald GF, O’Toole PW, van Sinderen D: The Bifidobacterium dentium Bd1 genome sequence reflects its genetic adaptation to the human oral cavity. PLoS Genet 2009, 5:e1000785.
  • [14]Turroni F, Bottacini F, Foroni E, Mulder I, Kim JH, Zomer A, Sanchez B, Bidossi A, Ferrarini A, Giubellini V, Delledonne M, Henrissat B, Coutinho P, Oggioni M, Fitzgerald GF, Mills D, Margolles A, Kelly D, van Sinderen D, Ventura M: Genome analysis of Bifidobacterium bifidum PRL2010 reveals metabolic pathways for host-derived glycan foraging. Proc Natl Acad Sci USA 2010, 107:19514-19519.
  • [15]Bottacini F, Turroni F, Viappiani A, Milani C, Serafini F, Foroni E, van Sinderen D, Ventura M: The genome sequences of Bifidobacterium asteroides PRL2011 reveals respiratory metabolic capabilities. PloS One 2012, 7(9):E44229.
  • [16]Makarova K, Slesarev A, Wolf Y, Sorokin A, Mirkin B, Koonin E, Pavlov A, Pavlova N, Karamychev V, Polouchine N, Shakhova V, Grigoriev I, Lou Y, Rohksar D, Lucas S, Huang K, Goodstein DM, Hawkins T, Plengvidhya V, Welker D, Hughes J, Goh Y, Benson A, Baldwin K, Lee JH, Díaz-Muñiz I, Dosti B, Smeianov V, Wechter W, Barabote R, et al.: Comparative genomics of the lactic acid bacteria. Proc Natl Acad Sci USA 2006, 103:15611-15616.
  • [17]Siguier P, Varani A, Perochon J, Chandler M: Exploring bacterial insertion sequences with ISfinder: objectives, uses, and future developments. Methods Mol Biol 2012, 859:91-103.
  • [18]Ventura M, Lee JH, Canchaya C, Zink R, Leahy S, Moreno-Munoz JA, O’Connell-Motherway M, Higgins D, Fitzgerald GF, O’Sullivan DJ, van Sinderen D: Prophage-like elements in bifidobacteria: insights from genomics, transcription, integration, distribution, and phylogenetic analysis. Appl Environ Microbiol 2005, 71:8692-8705.
  • [19]O’Riordan K, Fitzgerald GF: Molecular characterisation of a 5.75-kb cryptic plasmid from Bifidobacterium breve NCFB 2258 and determination of mode of replication. FEMS Microbiol Lett 1999, 174:285-294.
  • [20]Lee JH, O’Sullivan DJ: Genomic insights into bifidobacteria. Microbiol Mol Biol Rev 2010, 74:378-416.
  • [21]Brouwer MS, Roberts AP, Mullany P, Allan E: In silico analysis of sequenced strains of Clostridium difficile reveals a related set of conjugative transposons carrying a variety of accessory genes. Mob Genet Elements 2012, 2:8-12.
  • [22]Ventura M, Canchaya C, Del Casale A, Dellaglio F, Neviani E, Fitzgerald GF, van Sinderen D: Analysis of bifidobacterial evolution using a multilocus approach. Int J Syst Evol Microbiol 2006, 56:2783-2792.
  • [23]Fanning S, Hall LJ, Cronin M, Zomer A, MacSharry J, Goulding D, Motherway MO, Shanahan F, Nally K, Dougan G, van Sinderen D: Bifidobacterial surface-exopolysaccharide facilitates commensal-host interaction through immune modulation and pathogen protection. Proc Natl Acad Sci USA 2012, 109:2108-2113.
  • [24]O’Connell Motherway M, O’Driscoll J, Fitzgerald GF, Van Sinderen D: Overcoming the restriction barrier to plasmid transformation and targeted mutagenesis in Bifidobacterium breve UCC2003. Microb Biotechnol 2009, 2:321-332.
  • [25]Foroni E, Serafini F, Amidani D, Turroni F, He F, Bottacini F, O’Connell Motherway M, Viappiani A, Zhang Z, Rivetti C, van Sinderen D, Ventura M: Genetic analysis and morphological identification of pilus-like structures in members of the genus Bifidobacterium. Microb Cell Fact 2011, 10(1):S16. BioMed Central Full Text
  • [26]Zhao Y, Wu J, Yang J, Sun S, Xiao J, Yu J: PGAP: pan-genomes analysis pipeline. Bioinformatics 2012, 28:416-418.
  • [27]Pokusaeva K, Neves AR, Zomer A, O’Connell-Motherway M, Macsharry J, Curley P, Fitzgerald GF, Van Sinderen D: Ribose utilization by the human commensal Bifidobacterium breve UCC2003. Microb Biotechnol 2010, 3:311-323.
  • [28]Pokusaeva K, O’Connell-Motherway M, Zomer A, Fitzgerald GF, van Sinderen D: Characterization of two novel alpha-glucosidases from Bifidobacterium breve UCC2003. Appl Environ Microbiol 2009, 75:1135-1143.
  • [29]Aslanidis C, Schmid K, Schmitt R: Nucleotide sequences and operon structure of plasmid-borne genes mediating uptake and utilization of raffinose in Escherichia coli. J Bacteriol 1989, 171:6753-6763.
  • [30]Ryan SM, Fitzgerald GF, van Sinderen D: Screening for and identification of starch-, amylopectin-, and pullulan-degrading activities in bifidobacterial strains. Appl Environ Microbiol 2006, 72:5289-5296.
  • [31]Motherway MO, Fitzgerald GF, van Sinderen D: Metabolism of a plant derived galactose-containing polysaccharide by Bifidobacterium breve UCC2003. Microb Biotechnol 2011, 4:403-416.
  • [32]Pokusaeva K, O’Connell-Motherway M, Zomer A, MacSharry J, Fitzgerald GF, van Sinderen D: Cellodextrin Utilization by Bifidobacterium breve UCC2003. Appl Environ Microb 2011, 77:1681-1690.
  • [33]Nishimoto M, Kitaoka M: Identification of N-acetylhexosamine 1-kinase in the complete lacto-N-biose I/galacto-N-biose metabolic pathway in Bifidobacterium longum. Appl Environ Microbiol 2007, 73:6444-6449.
  • [34]Garrido D, Dallas DC, Mills DA: Consumption of human milk glycoconjugates by infant-associated bifidobacteria: mechanisms and implications. Microbiology 2013, 159:649-664.
  • [35]Locascio RG, Ninonuevo MR, Kronewitter SR, Freeman SL, German JB, Lebrilla CB, Mills DA: A versatile and scalable strategy for glycoprofiling bifidobacterial consumption of human milk oligosaccharides. Microb Biotechnol 2009, 2:333-342.
  • [36]Ward RE, Ninonuevo M, Mills DA, Lebrilla CB, German JB: In vitro fermentability of human milk oligosaccharides by several strains of bifidobacteria. Mol Nutr Food Res 2007, 51:1398-1405.
  • [37]Kim JH, An HJ, Garrido D, German JB, Lebrilla CB, Mills DA: Proteomic analysis of Bifidobacterium longum subsp. infantis reveals the metabolic insight on consumption of prebiotics and host glycans. PloS one 2013, 8:e57535.
  • [38]Falony G, Vlachou A, Verbrugghe K, De Vuyst L: Cross-feeding between Bifidobacterium longum BB536 and acetate-converting, butyrate-producing colon bacteria during growth on oligofructose. Appl Environ Microbiol 2006, 72:7835-7841.
  • [39]Coutinho PM, Henrissat B: Life with no sugars? J Mol Microbiol Biotechnol 1999, 1:307-308.
  • [40]Hirayama Y, Sakanaka M, Fukuma H, Murayama H, Kano Y, Fukiya S, Yokota A: Development of a double-crossover markerless gene deletion system in Bifidobacterium longum: functional analysis of the alpha-galactosidase gene for raffinose assimilation. Appl Environ Microbiol 2012, 78:4984-4994.
  • [41]O’Connell KJ, O’Connell Motherway M, O’Callaghan J, Fitzgerald GF, Ross RP, Ventura M, Stanton C, van Sinderen D: Metabolism of four alpha-glycosidic linkage-containing oligosaccharides by Bifidobacterium breve UCC2003. Appl Environ Microbiol 2013, 79:6280-6292.
  • [42]Turroni F, Foroni E, Giubellini V, Ribbera A, Merusi P, Cagnasso P, Bizzarri B, De’ Angelis GL, Shanahan F, van Sinderen D: Exploring the diversity of the bifidobacterial population in the human intestinal tract. Appl Environ Microbiol 75:1534-1545.
  • [43]Milani C, Duranti S, Lugli GA, Bottacini F, Strati F, Arioli S, Foroni E, Turroni F, van Sinderen D, Ventura M: Comparative genomics of Bifidobacterium animalis subsp. lactis reveals a strict monophyletic bifidobacterial taxon. Appl Environ Microbiol 2013, 79:4304-4315.
  • [44]Patel RK, Jain M: NGS QC Toolkit: a toolkit for quality control of next generation sequencing data. PloS one 2012, 7:e30619.
  • [45]Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment search tool. J Mol Biol 1990, 215:403-410.
  • [46]Tatusov RL, Galperin MY, Natale DA, Koonin EV: The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res 2000, 28:33-36.
  • [47]Schattner P, Brooks AN, Lowe TM: The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs. Nucleic Acids Res 2005, 33:W686-689.
  • [48]Lagesen K, Hallin P, Rodland EA, Staerfeldt HH, Rognes T, Ussery DW: RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 2007, 35:3100-3108.
  • [49]Rice P, Longden I, Bleasby A: EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet 2000, 16:276-277.
  • [50]Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu C, Salzberg SL: Versatile and open software for comparing large genomes. Genome Biol 2004, 5:R12. BioMed Central Full Text
  • [51]Enright AJ, Van Dongen S, Ouzounis CA: An efficient algorithm for large-scale detection of protein families. Nucleic Acids Res 2002, 30:1575-1584.
  • [52]Thompson JD, Gibson TJ, Higgins DG: Multiple sequence alignment using ClustalW and ClustalX. Current protocols in bioinformatics/editoral board, Andreas D Baxevanis [et al.] 2002. Volume 2 3. 2nd edition
  • [53]Guindon S, Gascuel O: A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 2003, 52:696-704.
  文献评价指标  
  下载次数:63次 浏览次数:7次