期刊论文详细信息
BMC Evolutionary Biology
Impact of thermal stress on evolutionary trajectories of pathogen resistance in three-spined stickleback (Gasterosteus aculeatus)
K Mathias Wegner1  Lisa NS Shama1  Franziska M Schade1 
[1] Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Hafenstrasse 43, List/Sylt, 25992, Germany
关键词: Selection;    Genotype x environment Interaction;    Vibrio tubiashii;    Infectious diseases;    Climate change;   
Others  :  1118106
DOI  :  10.1186/s12862-014-0164-5
 received in 2013-11-13, accepted in 2014-07-14,  发布年份 2014
PDF
【 摘 要 】

Background

Pathogens are a major regulatory force for host populations, especially under stressful conditions. Elevated temperatures may enhance the development of pathogens, increase the number of transmission stages, and can negatively influence host susceptibility depending on host thermal tolerance. As a net result, this can lead to a higher prevalence of epidemics during summer months. These conditions also apply to marine ecosystems, where possible ecological impacts and the population-specific potential for evolutionary responses to changing environments and increasing disease prevalence are, however, less known. Therefore, we investigated the influence of thermal stress on the evolutionary trajectories of disease resistance in three marine populations of three-spined sticklebacks Gasterosteus aculeatus by combining the effects of elevated temperature and infection with a bacterial strain of Vibrio sp. using a common garden experiment.

Results

We found that thermal stress had an impact on fish weight and especially on survival after infection after only short periods of thermal acclimation. Environmental stress reduced genetic differentiation (QST) between populations by releasing cryptic within-population variation. While life history traits displayed positive genetic correlations across environments with relatively weak genotype by environment interactions (GxE), environmental stress led to negative genetic correlations across environments in pathogen resistance. This reversal of genetic effects governing resistance is probably attributable to changing environment-dependent virulence mechanisms of the pathogen interacting differently with host genotypes, i.e. GPathogenxGHostxE or (GPathogenxE)x(GHostxE) interactions, rather than to pure host genetic effects, i.e. GHostxE interactions.

Conclusion

To cope with climatic changes and the associated increase in pathogen virulence, host species require wide thermal tolerances and pathogen-resistant genotypes. The higher resistance we found for some families at elevated temperatures showed that there is evolutionary potential for resistance to Vibrio sp. in both thermal environments. The negative genetic correlation of pathogen resistance between thermal environments, on the other hand, indicates that adaptation to current conditions can be a weak predictor for performance in changing environments. The observed feedback on selective gradients exerted on life history traits may exacerbate this effect, as it can also modify the response to selection for other vital components of fitness.

【 授权许可】

   
2014 Schade et al.; licensee BioMed Central

【 预 览 】
附件列表
Files Size Format View
20150206020815743.pdf 768KB PDF download
Figure 5. 40KB Image download
Figure 4. 52KB Image download
Figure 4. 43KB Image download
Figure 2. 15KB Image download
Figure 1. 21KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 4.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Hudson PJ, Rizzol IA, Grenfell BT, Heesterbeek H, Dobson AP: The ecology of wildlife diseases. Oxford University Press, Oxford; 2002.
  • [2]Altizer S, Harvell D, Friedle E: Rapid evolutionary dynamics and disease threats to biodiversity. Trends Ecol Evol 2003, 18(11):589-596.
  • [3]Cattadori IM, Haydon DT, Hudson PJ: Parasites and climate synchronize red grouse populations. Nature 2005, 433(7027):737-741.
  • [4]Harvell CD, Mitchell CE, Ward JR, Altizer S, Dobson AP, Ostfeld RS, Samuel MD: Ecology - Climate warming and disease risks for terrestrial and marine biota. Science 2002, 296(5576):2158-2162.
  • [5]Shiah FK, Ducklow HW: Temperature and substrate regulation of bacterial abundance, production and specific growth-rate in chesapeake bay, USA. Mar Ecol Prog Ser 1994, 103(3):297-308.
  • [6]Karvonen A, Rintamaki P, Jokela J, Valtonen ET: Increasing water temperature and disease risks in aquatic systems: Climate change increases the risk of some, but not all, diseases. Int J Parasitol 2010, 40(13):1483-1488.
  • [7]Pounds JA, Bustamante MR, Coloma LA, Consuegra JA, Fogden MPL, Foster PN, La Marca E, Masters KL, Merino-Viteri A, Puschendorf R, Ron SR, Sánchez-Azofeifa GA, Still CJ, Young BE: Widespread amphibian extinctions from epidemic disease driven by global warming. Nature 2006, 439(7073):161-167.
  • [8]Kim K, Harvell CD, Kim PD, Smith GW, Merkel SM: Fungal disease resistance of Caribbean sea fan corals (Gorgonia spp.). Mar Biol 2000, 136(2):259-267.
  • [9]Lafferty KD: The ecology of climate change and infectious diseases. Ecology 2009, 90(4):888-900.
  • [10]Harvell CD, Kim K, Burkholder JM, Colwell RR, Epstein PR, Grimes DJ, Hofmann EE, Lipp EK, Osterhaus AD, Overstreet RM, Porter JW, Smith GW, Vasta GR: Emerging Marine Diseases--Climate Links and Anthropogenic Factors. Science 1999, 285(5433):1505-1510.
  • [11]Arnell NW: Climate change and global water resources. Glob Environ Change-Human Policy Dimens 1999, 9:S31-S49.
  • [12]Alborali L: Climatic variations related to fish diseases and production. Vet Res Commun 2006, 30:93-97.
  • [13]Harley CDG, Hughes AR, Hultgren KM, Miner BG, Sorte CJB, Thornber CS, Rodriguez LF, Tomanek L, Williams SL: The impacts of climate change in coastal marine systems. Ecol Lett 2006, 9(2):228-241.
  • [14]Visser ME: Keeping up with a warming world; assessing the rate of adaptation to climate change. Proc R Soc B-Biol Sci 2008, 275(1635):649-659.
  • [15]Eliason EJ, Clark TD, Hague MJ, Hanson LM, Gallagher ZS, Jeffries KM, Gale MK, Patterson DA, Hinch SG, Farrell AP: Differences in Thermal Tolerance Among Sockeye Salmon Populations. Science 2011, 332(6025):109-112.
  • [16]Perry AL, Low PJ, Ellis JR, Reynolds JD: Climate change and distribution shifts in marine fishes. Science 2005, 308(5730):1912-1915.
  • [17]Gienapp P, Teplitsky C, Alho JS, Mills JA, Merila J: Climate change and evolution: disentangling environmental and genetic responses. Mol Ecol 2008, 17(1):167-178.
  • [18]McGuigan K, Nishimura N, Currey M, Hurwit D, Cresko WA: Cryptic genetic variation and body size evolution in threespine stickleback. Evolution 2011, 65(4):1203-1211.
  • [19]Austin B, Austin DA: Bacterial Fish Pathogens: Diseases of Farmed and Wild Fish. Chichester: Springer; 2007.
  • [20]Thompson JR, Randa MA, Marcelino LA, Tomita-Mitchell A, Lim E, Polz MF: Diversity and dynamics of a north Atlantic coastal Vibrio community. Appl Environ Microbiol 2004, 70(7):4103-4110.
  • [21]Vezzulli L, Previati M, Pruzzo C, Marchese A, Bourne DG, Cerrano C, VibrioSea C: Vibrio infections triggering mass mortality events in a warming Mediterranean Sea. Environ Microbiol 2010, 12(7):2007-2019.
  • [22]Oberbeckmann S, Fuchs BM, Meiners M, Wichels A, Wiltshire KH, Gerdts G: Seasonal Dynamics and Modeling of a Vibrio Community in Coastal Waters of the North Sea. Microb Ecol 2012, 63(3):543-551.
  • [23]Elston RA, Hasegawa H, Humphrey KL, Polyak IK, Hase CC: Re-emergence of Vibrio tubiashii in bivalve shellfish aquaculture: severity, environmental drivers, geographic extent and management. Dis Aquat Org 2008, 82(2):119-134.
  • [24]Hada HS, West PA, Lee JV, Stemmler J, Colwell RR: Vibrio tubiashii sp-nov, a pathogen of bivalve mollusks. Int J Syst Bacteriol 1984, 34(1):1-4.
  • [25]Egidius E: Vibriosis-pathogenicity and pathology - a review. Aquaculture 1987, 67(1–2):15-28.
  • [26]Austin B, Austin D, Sutherland R, Thompson F, Swings J: Pathogenicity of vibrios to rainbow trout (Oncorhynchus mykiss, Walbaum) and Artemia nauplii. Environ Microbiol 2005, 7(9):1488-1495.
  • [27]Woo PTK, Bruno DW: Fish Diseases and Disorders, Volume 3: Viral, Bacterial and Fungal Infections, 2nd Edition Preface to the. 2011.
  • [28]Barber I, Arnott SA, Braithwaite VA, Andrew J, Huntingford FA: Indirect fitness consequences of mate choice in sticklebacks: offspring of brighter males grow slowly but resist parasitic infections. Proc R Soc B-Biol Sci 2001, 268(1462):71-76.
  • [29]Kurtz J, Kalbe M, Aeschlimann PB, Haberli MA, Wegner KM, Reusch TBH, Milinski M: Major histocompatibility complex diversity influences parasite resistance and innate immunity in sticklebacks. Proc R Soc B-Biol Sci 2004, 271(1535):197-204.
  • [30]Wegner KM, Kalbe M, Milinski M, Reusch TBH: Mortality selection during the 2003 European heat wave in three-spined sticklebacks: effects of parasites and MHC genotype. BMC Evol Biol 2008, 8:124. BioMed Central Full Text
  • [31]Jordan CM, Garside ET: Upper lethal temperatures of threespine stickleback, Gasterosteus aculeatus (L), in relation to thermal and osmotic acclimation, ambient salinity and size. Can J Zool 1972, 50(11):1405.
  • [32]Macnab V, Barber I: Some (worms) like it hot: fish parasites grow faster in warmer water, and alter host thermal preferences. Glob Chang Biol 2012, 18(5):1540-1548.
  • [33]Garside ET, Heinze DG, Barbour SE: Thermal preference in relation to salinity in threespine stickleback, Gasterosteus aculetus L, with an interpredation of its significance. Can J Zool-Revue Canadienne De Zoologie 1977, 55(3):590-594.
  • [34]Sheppard C: Sea surface temperature 1871–2099 in 14 cells around the United Kingdom. Mar Pollut Bull 2004, 49(1–2):12-16.
  • [35]Ramler D, Mitteroecker P, Shama L, Wegner K, Ahnelt H: Nonlinear effects of temperature on body form and developmental canalization in the threespine stickleback. J Evol Biol 2014, 27:497-507.
  • [36]Schär C, Vidale PL, Lüthi D, Frei C, Häberli C, Liniger MA, Appenzeller C: The role of increasing temperature variability in European summer heatwaves. Nature 2004, 427(6972):332-336.
  • [37]Largiader CR, Fries V, Kobler B, Bakker TCM: Isolation and characterization of microsatellite loci from the three-spined stickleback (Gasterosteus aculeatus L.). Mol Ecol 1999, 8(2):342-344.
  • [38]Peichel CL, Nereng KS, Ohgi KA, Cole BLE, Colosimo PF, Buerkle CA, Schluter D, Kingsley DM: The genetic architecture of divergence between threespine stickleback species. Nature 2001, 414(6866):901-905.
  • [39]Weir BS, Cockerham CC: Estimating F-statistics for the analysis of population-structure. Evolution 1984, 38(6):1358-1370.
  • [40]Belkhir KBP, Chikhi L, Raufaste N, Bonhomme F: GENETIX 4.05, logiciel sous Windows TM pour la génétique des populations. In Montpellier. Laboratoire Génome, Populations, Interactions, Université de Montpellier II, France; 1996:2004.
  • [41]Whitlock MC, Guillaume F: Testing for spatially divergent selection: comparing QST to FST. Genetics 2009, 183(3):1055-1063.
  • [42]Hadfield JD: MCMC Methods for Multi-Response Generalized Linear Mixed Models: The MCMCglmm R Package. J Stat Softw 2010, 33(2):1-22.
  • [43]R Development Core Team: R: A language and environment for statistical computingR Foundation for Statistical Computing; 2008.
  • [44]Spiegelhalter DJ, Best NG, Carlin BR, van der Linde A: Bayesian measures of model complexity and fit. J R Stat Soc Series B-Stat Methodol 2002, 64:583-616.
  • [45]Spitze K: Population-structure in Daphnia-Obtusa - quantitative genetic and allozymic variation. Genetics 1993, 135(2):367-374.
  • [46]Falconer DS: The Problem of Environment and Selection. Am Nat 1952, 86(830):293-298.
  • [47]Leinonen T, Cano JM, Makinen H, Merila J: Contrasting patterns of body shape and neutral genetic divergence in marine and lake populations of threespine sticklebacks. J Evol Biol 2006, 19(6):1803-1812.
  • [48]Raeymaekers JAM, Van Houdt JKJ, Larmuseau MHD, Geldof S, Volckaert FAM: Divergent selection as revealed by P-ST and QTL-based F-ST in three-spined stickleback (Gasterosteus aculeatus) populations along a coastal-inland gradient. Mol Ecol 2007, 16(4):891-905.
  • [49]Reusch TBH, Wegner KM, Kalbe M: Rapid genetic divergence in postglacial populations of threespine stickleback (Gasterosteus aculeatus): the role of habitat type, drainage and geographical proximity. Mol Ecol 2001, 10(10):2435-2445.
  • [50]Hoarau G, Rijnsdorp AD, Van der Veer HW, Stam WT, Olsen JL: Population structure of plaice (Pleuronectes platessa L.) in northern Europe: microsatellites revealed large-scale spatial and temporal homogeneity. Mol Ecol 2002, 11(7):1165-1176.
  • [51]Merila J, Crnokrak P: Comparison of genetic differentiation at marker loci and quantitative traits. J Evol Biol 2001, 14(6):892-903.
  • [52]Beitinger TL, Bennett WA, McCauley RW: Temperature tolerances of North American freshwater fishes exposed to dynamic changes in temperature. Environ Biol Fish 2000, 58(3):237-275.
  • [53]Dominguez M, Takemura A, Tsuchiya M, Nakamura S: Impact of different environmental factors on the circulating immunoglobulin levels in the Nile tilapia, Oreochromis niloticus. Aquaculture 2004, 241(1–4):491-500.
  • [54]Donelson JM, Munday PL, McCormick MI, Pitcher CR: Rapid transgenerational acclimation of a tropical reef fish to climate change. Nat Clim Chang 2012, 2(1):30-32.
  • [55]Guderley H, Leroy PH: Family origin and the response of threespine stickleback, Gasterosteus aculeatus, to thermal acclimation. J Comp Physiol B-Biochem Syst Environ Physiol 2001, 171(2):91-101.
  • [56]Allen JRM, Wootton RJ: The effect of ration and temperature on the growth of the 3-spined stickleback, Gasterosteus aculeatus L. J Fish Biol 1982, 20(4):409-422.
  • [57]Lefebure R, Larsson S, Bystrom P: A temperature-dependent growth model for the three-spined stickleback Gasterosteus aculeatus. J Fish Biol 2011, 79(7):1815-1827.
  • [58]Portner HO: Climate change and temperature-dependent biogeography: oxygen limitation of thermal tolerance in animals. Naturwissenschaften 2001, 88(4):137-146.
  • [59]Green BS, Fisher R: Temperature influences swimming speed, growth and larval duration in coral reef fish larvae. J Exp Mar Biol Ecol 2004, 299(1):115-132.
  • [60]Sponaugle S, Grorud-Colvert K, Pinkard D: Temperature-mediated variation in early life history traits and recruitment success of the coral reef fish Thalassoma bifasciatum in the Florida Keys. Mar Ecol Prog Ser 2006, 308:1-15.
  • [61]Shama L, Strobel A, Mark F, Wegner K: Transgenerational plasticity in marine sticklebacks: maternal effects mediate impacts of a warming ocean.Funct Ecol 2014, doi:10.1111/1365-2435.12280.
  • [62]Nikoskelainen S, Bylund G, Lilius EM: Effect of environmental temperature on rainbow trout (Oncorhynchus mykiss) innate immunity. Dev Comp Immunol 2004, 28(6):581-592.
  • [63]Weyts FAA, Cohen N, Flik G, Verburg-van Kemenade BML: Interactions between the immune system and the hypothalamo-pituitary-interrenal axis in fish. Fish Shellfish Immunol 1999, 9(1):1-20.
  • [64]Landis SH, Kalbe M, Reusch TBH, Roth O: Consistent Pattern of Local Adaptation during an Experimental Heat Wave in a Pipefish-Trematode Host-Parasite System. PLoS One 2012, 7:1.
  • [65]Lafferty KD, Holt RD: How should environmental stress affect the population dynamics of disease? Ecol Lett 2003, 6(7):654-664.
  • [66]Temperton B, Thomas S, Tait K, Parry H, Emery M, Allen M, Quinn J, MacGrath J, Gilbert J: Permanent draft genome sequence of Vibrio tubiashii strain NCIMB 1337 (ATCC19106). Stand Genomic Sci 2011, 4(2):183-190.
  • [67]Hoffmann AA, Merila J: Heritable variation and evolution under favourable and unfavourable conditions. Trends Ecol Evol 1999, 14(3):96-101.
  • [68]Hoffmann AA, Parsons PA: Evolutionary genetics and environmental stress. 1991.
  • [69]Kawecki TJ, Barton NH, Fry JD: Mutational collapse of fitness in marginal habitats and the evolution of ecological specialisation. J Evol Biol 1997, 10(3):407-429.
  • [70]Hartl DL, Dykhuizen DE, Dean AM: Limits of adaptation - the evolution of selective neutrality. Genetics 1985, 111(3):655-674.
  • [71]Blum A: Plant Breeding for Stress Environments: CRC Press. 1988.
  • [72]Gebhardthenrich SG, Vannoordwijk AJ: Nestling growth in the great tit 1. Heritability estimates under different environmental conditions. J Evol Biol 1991, 4(3):341-362.
  • [73]Ebert D, Yampolsky L, Stearns SC: Genetics of life-history in daphnia-magna. 1. Heritabilities at two food levels. Heredity 1993, 70:335-343.
  • [74]Gavrilets S, Scheiner SM: The genetics of phenotypic plasticity 6. theoretical predicitions for directional selection. J Evol Biol 1993, 6(1):49-68.
  • [75]Knopp T, Cano JM, Crochet P-A, Merila J: Contrasting levels of variation in neutral and quantitative genetic loci on island populations of moor frogs (Rana arvalis). Conserv Genet 2007, 8(1):45-56.
  • [76]Leinonen T, O'Hara RB, Cano JM, Merila J: Comparative studies of quantitative trait and neutral marker divergence: a meta-analysis. J Evol Biol 2008, 21(1):1-17.
  • [77]Roberge C, Guderley H, Bernatchez L: Genomewide identification of genes under directional selection: Gene transcription Q(ST) scan in diverging Atlantic salmon subpopulations. Genetics 2007, 177(2):1011-1022.
  • [78]Tubiash HS, Chanley PE, Leif-Son E: Bacillary necrosis, a disease of larval and juvenile bivalve mol-lusks. I. Etiology and epizootiology. J Bacteriol 1965, 90(4):1036-1044.
  • [79]Charmantier A, Garant D: Environmental quality and evolutionary potential: lessons from wild populations. Proc R Soc B-Biol Sci 2005, 272(1571):1415-1425.
  • [80]Poertner HO, Farrell AP: Ecology Physiology and climate change. Science 2008, 322(5902):690-692.
  • [81][http://doi.org/10.1594/PANGAEA.833937] webcite Schade FM, Shama LNS, Wegner KM: Data from: Impact of thermal stress on evolutionary trajectories of pathogen resistance in three-spined stickleback (Gasterosteus aculeatus).Pangaea 2014, .
  文献评价指标  
  下载次数:22次 浏览次数:11次