New tools are needed to enable rapid detection, identification, and reporting of infectious viral and microbial pathogens in a wide variety of point-of-care applications that impact human and animal health. We report the design, construction, and characterization of a multiplexed platform for multiplexed analysis of disease-specific DNA sequences that utilizes a smartphone camera as the sensor in conjunction with a handheld “cradle” that interfaces the phone with a silicon-based microfluidic chip embedded within a credit card-sized cartridge. Utilizing specific nucleic acid sequences for four equine respiratory pathogens as representative examples, we demonstrate the ability of the system to utilize a single 15 µL droplet of test sample to perform selective positive/negative determination of target sequences, including integrated experimental controls, in approximately 30 minutes.Our approach utilizes loop mediated isothermal amplification (LAMP) reagents pre-deposited into distinct lanes of the microfluidic chip, which, when exposed to target nucleic acid sequences from the test sample, generates fluorescent products that, when excited by appropriately selected light emitting diodes (LEDs) are visualized and automatically analyzed by a software application running on the smartphone microprocessor. The system achieves detection limits comparable to those obtained by laboratory-based methods and instruments. Assay information is combined with information from the cartridge and the patient to populate a cloud-based database for epidemiological reporting of test results.
【 预 览 】
附件列表
Files
Size
Format
View
Loop mediated isothermal amplification based detection of equine respiratory pathogens using a portable, smartphone-based setup