BMC Nephrology | |
Shear wave elastography in chronic kidney disease: a pilot experience in native kidneys | |
Herbert Y. Lin2  Ravi I. Thadhani2  Julia Wenger2  Jodie L. Babitt2  Winfred W. Williams2  Sarah Dougherty2  Caitlin A. Trottier2  Dorothy A. Sullivan2  Arash Anvari1  Manish Dhyani1  Qingli Zhu1  Andrew S. Allegretti2  Anthony E. Samir1  | |
[1] Department of Radiology, Massachusetts General Hospital, Boston 02114, MA, USA;Department of Medicine, Division of Nephrology, Massachusetts General Hospital, 185 Cambridge St, Suite 8.216, Boston 02114, MA, USA | |
关键词: Ultrasound; Shear wave elastography; Fibrosis; Stiffness; Chronic kidney disease; | |
Others : 1222305 DOI : 10.1186/s12882-015-0120-7 |
|
received in 2015-02-05, accepted in 2015-07-22, 发布年份 2015 | |
【 摘 要 】
Background
There currently is a need for a non-invasive measure of renal fibrosis. We aim to explore whether shear wave elastography (SWE)-derived estimates of tissue stiffness may serve as a non-invasive biomarker that can distinguish normal and abnormal renal parenchymal tissue.
Methods
Participants with CKD (by estimated GFR) and healthy volunteers underwent SWE. Renal elasticity was estimated as Young’s modulus (YM) in kilopascals (kPa). Univariate Wilcoxon rank-sum tests were used.
Results
Twenty-five participants with CKD (median GFR 38 mL/min; quartile 1, quartile 3 28, 42) and 20 healthy controls without CKD underwent SWE performed by a single radiologist. CKD was associated with increased median YM (9.40 [5.55, 22.35] vs. 4.40 [3.68, 5.70] kPa; p = 0.002) and higher median intra-subject inter-measurement estimated YM’s variability (4.27 [2.89, 9.90] vs. 1.51 [1.21, 2.05] kPa; p < 0.001).
Conclusions
SWE-derived estimates of renal stiffness and intra-subject estimated stiffness variability are higher in patients with CKD than in healthy controls. Renal fibrosis is a plausible explanation for the observed difference in YM. Further studies are required to determine the relationship between YM, estimated renal stiffness, and renal fibrosis severity.
【 授权许可】
2015 Samir et al.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150818032447964.pdf | 1643KB | download | |
Fig. 3. | 16KB | Image | download |
Fig. 2. | 28KB | Image | download |
Fig. 1. | 24KB | Image | download |
【 图 表 】
Fig. 1.
Fig. 2.
Fig. 3.
【 参考文献 】
- [1]Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int Suppl. 2013; 3:1-150.
- [2]Stevens PE, Levin A. Evaluation and management of chronic kidney disease: synopsis of the kidney disease: improving global outcomes 2012 clinical practice guideline. Ann Intern Med. 2013; 158(11):825-30.
- [3]Collins AJ, Foley RN, Herzog C, Chavers BM, Gilbertson D, Ishani A et al.. Excerpts from the US Renal Data System 2009 Annual Data Report. Am J Kidney Dis. 2010; 55(1 Suppl 1):S1-420.
- [4]Coresh J, Byrd-Holt D, Astor BC, Briggs JP, Eggers PW, Lacher DA et al.. Chronic kidney disease awareness, prevalence, and trends among U.S. adults, 1999 to 2000. J Am Soc Nephrol. 2005; 16(1):180-188.
- [5]Go AS, Chertow GM, Fan D, McCulloch CE, Hsu CY. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med. 2004; 351(13):1296-305.
- [6]Rule AD, Rodeheffer RJ, Larson TS, Burnett JC, Cosio FG, Turner ST et al.. Limitations of estimating glomerular filtration rate from serum creatinine in the general population. Mayo Clin Proc. 2006; 81(11):1427-34.
- [7]Bohle A, Mackensen-Haen S, von Gise H. Significance of tubulointerstitial changes in the renal cortex for the excretory function and concentration ability of the kidney: a morphometric contribution. Am J Nephrol. 1987; 7(6):421-33.
- [8]Eddy AA. Experimental insights into the tubulointerstitial disease accompanying primary glomerular lesions. J Am Soc Nephrol. 1994; 5(6):1273-87.
- [9]Hewitson TD. Fibrosis in the kidney: is a problem shared a problem halved? Fibrogenesis Tissue Repair. 2012; 5 Suppl 1 Proceedings of Fibroproliferative disorders: from biochemical analysis to targeted therapiesPetro E Petrides and David Brenner:S14.
- [10]Farris AB, Colvin RB. Renal interstitial fibrosis: mechanisms and evaluation. Curr Opin Nephrol Hypertens. 2012; 21(3):289-300.
- [11]Whittier WL, Korbet SM. Timing of complications in percutaneous renal biopsy. J Am Soc Nephrol. 2004; 15(1):142-7.
- [12]Maripuri S, Penson DF, Ikizler TA, Cavanaugh KL. Outpatient versus inpatient observation after percutaneous native kidney biopsy: a cost minimization study. Am J Nephrol. 2011; 34(1):64-70.
- [13]Urban MW, Chen S, Fatemi M. A review of Shearwave Dispersion Ultrasound Vibrometry (SDUV) and its Applications. Curr Med Imaging Rev. 2012; 8(1):27-36.
- [14]Kotlyar DS, Blonski W, Rustgi VK. Noninvasive monitoring of hepatitis C fibrosis progression. Clin Liver Dis. 2008; 12(3):557-71.
- [15]Chen S, Sanchez W, Callstrom MR, Gorman B, Lewis JT, Sanderson SO et al.. Assessment of liver viscoelasticity by using shear waves induced by ultrasound radiation force. Radiology. 2013; 266(3):964-70.
- [16]Zheng XZ, Ji P, Mao HW, Zhang XY, Xia EH, Xing-Gu et al.. A novel approach to assessing changes in prostate stiffness with age using virtual touch tissue quantification. J Ultrasound Med. 2011; 30(3):387-90.
- [17]Bai M, Du L, Gu J, Li F, Jia X. Virtual touch tissue quantification using acoustic radiation force impulse technology: initial clinical experience with solid breast masses. J Ultrasound Med. 2012; 31(2):289-94.
- [18]Zhang YF, Xu HX, He Y, Liu C, Guo LH, Liu LN et al.. Virtual touch tissue quantification of acoustic radiation force impulse: a new ultrasound elastic imaging in the diagnosis of thyroid nodules. PLoS One. 2012; 7(11): Article ID e49094
- [19]Arndt R, Schmidt S, Loddenkemper C, Grunbaum M, Zidek W, van der Giet M et al.. Noninvasive evaluation of renal allograft fibrosis by transient elastography--a pilot study. Transpl Int. 2010; 23(9):871-7.
- [20]Grenier N, Poulain S, Lepreux S, Gennisson JL, Dallaudiere B, Lebras Y et al.. Quantitative elastography of renal transplants using supersonic shear imaging: a pilot study. Eur Radiol. 2012; 22(10):2138-46.
- [21]Sommerer C, Scharf M, Seitz C, Millonig G, Seitz HK, Zeier M et al.. Assessment of renal allograft fibrosis by transient elastography. Transpl Int. 2013; 26(5):545-51.
- [22]Wang L, Xia P, Lv K, Han J, Dai Q, Li XM et al.. Assessment of renal tissue elasticity by acoustic radiation force impulse quantification with histopathological correlation: preliminary experience in chronic kidney disease. Eur Radiol. 2014; 24(7):1694-9.
- [23]Gennisson JL, Grenier N, Combe C, Tanter M. Supersonic shear wave elastography of in vivo pig kidney: influence of blood pressure, urinary pressure and tissue anisotropy. Ultrasound Med Biol. 2012; 38(9):1559-67.
- [24]Guo LH, Xu HX, Fu HJ, Peng A, Zhang YF, Liu LN. Acoustic radiation force impulse imaging for noninvasive evaluation of renal parenchyma elasticity: preliminary findings. PLoS One. 2013; 8(7): Article ID e68925
- [25]Levey AS, Coresh J, Greene T, Stevens LA, Zhang YL, Hendriksen S et al.. Using standardized serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular filtration rate. Ann Intern Med. 2006; 145(4):247-54.
- [26]Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG. Research electronic data capture (REDCap)—a metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed Inform. 2009; 42(2):377-81.
- [27]Ferraioli G, Tinelli C, Dal Bello B, Zicchetti M, Filice G, Filice C et al.. Accuracy of real-time shear wave elastography for assessing liver fibrosis in chronic hepatitis C: a pilot study. Hepatology. 2012; 56(6):2125-33.
- [28]Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez JC et al.. pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics. 2011; 12:77.
- [29]Carpenter J, Bithell J. Bootstrap confidence intervals: when, which, what? A practical guide for medical statisticians. Stat Med. 2000; 19(9):1141-64.
- [30]O'Neill WC. B-mode sonography in acute renal failure. Nephron Clin Pract. 2006; 103(2):c19-23.
- [31]Stock KF, Klein BS, Vo Cong MT, Sarkar O, Romisch M, Regenbogen C et al.. ARFI-based tissue elasticity quantification in comparison to histology for the diagnosis of renal transplant fibrosis. Clin Hemorheol Microcirc. 2010; 46(2–3):139-48.
- [32]He WY, Jin YJ, Wang WP, Li CL, Ji ZB, Yang C. Tissue elasticity quantification by acoustic radiation force impulse for the assessment of renal allograft function. Ultrasound Med Biol. 2014; 40(2):322-9.
- [33]Syversveen T, Brabrand K, Midtvedt K, Strom EH, Hartmann A, Jakobsen JA et al.. Assessment of renal allograft fibrosis by acoustic radiation force impulse quantification—a pilot study. Transpl Int. 2011; 24(1):100-5.
- [34]Farris AB, Adams CD, Brousaides N, Della Pelle PA, Collins AB, Moradi E et al.. Morphometric and visual evaluation of fibrosis in renal biopsies. J Am Soc Nephrol. 2011; 22(1):176-86.
- [35]Arda K, Ciledag N, Aktas E, Aribas BK, Kose K. Quantitative assessment of normal soft-tissue elasticity using shear-wave ultrasound elastography. AJR Am J Roentgenol. 2011; 197(3):532-6.
- [36]Sagir A, Erhardt A, Schmitt M, Haussinger D. Transient elastography is unreliable for detection of cirrhosis in patients with acute liver damage. Hepatology. 2008; 47(2):592-5.
- [37]Chang S, Kim MJ, Kim J, Lee MJ. Variability of shear wave velocity using different frequencies in acoustic radiation force impulse (ARFI) elastography: a phantom and normal liver study. Ultraschall Med. 2013; 34(3):260-5.
- [38]Potthoff A, Attia D, Pischke S, Kirschner J, Mederacke I, Wedemeyer H et al.. Influence of different frequencies and insertion depths on the diagnostic accuracy of liver elastography by acoustic radiation force impulse imaging (ARFI). Eur J Radiol. 2013; 82(8):1207-12.
- [39]Ozkan F, Yavuz YC, Inci MF, Altunoluk B, Ozcan N, Yuksel M et al.. Interobserver variability of ultrasound elastography in transplant kidneys: correlations with clinical-Doppler parameters. Ultrasound Med Biol. 2013; 39(1):4-9.