期刊论文详细信息
BMC Systems Biology
Inference of dynamical gene-regulatory networks based on time-resolved multi-stimuli multi-experiment data applying NetGenerator V2.0
Dominik Driesch1  Everardus J van Zoelen2  Reinhard Guthke3  Sebastian Vlaic3  Sebastian G Henkel1  Michael Weber3 
[1] , BioControl Jena GmbH, Wildenbruchstr. 15, 07745 Jena, Germany, www.biocontrol-jena.com;Department of Cell and Applied Biology, Radboud University, Heijendaalseweg 135, 6525 AJ Nijmegen, The Netherlands;, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Beutenbergstr. 11a, 07745 Jena, Germany
关键词: NetGenerator;    ODE;    Heuristic algorithm;    Network inference;    Gene-regulatory networks;   
Others  :  1143333
DOI  :  10.1186/1752-0509-7-1
 received in 2012-08-06, accepted in 2012-12-15,  发布年份 2013
【 摘 要 】

Background

Inference of gene-regulatory networks (GRNs) is important for understanding behaviour and potential treatment of biological systems. Knowledge about GRNs gained from transcriptome analysis can be increased by multiple experiments and/or multiple stimuli. Since GRNs are complex and dynamical, appropriate methods and algorithms are needed for constructing models describing these dynamics. Algorithms based on heuristic approaches reduce the effort in parameter identification and computation time.

Results

The NetGenerator V2.0 algorithm, a heuristic for network inference, is proposed and described. It automatically generates a system of differential equations modelling structure and dynamics of the network based on time-resolved gene expression data. In contrast to a previous version, the inference considers multi-stimuli multi-experiment data and contains different methods for integrating prior knowledge. The resulting significant changes in the algorithmic procedures are explained in detail. NetGenerator is applied to relevant benchmark examples evaluating the inference for data from experiments with different stimuli. Also, the underlying GRN of chondrogenic differentiation, a real-world multi-stimulus problem, is inferred and analysed.

Conclusions

NetGenerator is able to determine the structure and parameters of GRNs and their dynamics. The new features of the algorithm extend the range of possible experimental set-ups, results and biological interpretations. Based upon benchmarks, the algorithm provides good results in terms of specificity, sensitivity, efficiency and model fit.

【 授权许可】

   
2013 Weber et al.; licensee BioMed Central Ltd.

附件列表
Files Size Format View
Figure 5. 93KB Image download
Figure 8. 63KB Image download
Figure 7. 49KB Image download
Figure 6. 47KB Image download
Figure 5. 60KB Image download
Figure 4. 50KB Image download
Figure 3. 65KB Image download
Figure 2. 54KB Image download
Figure 1. 84KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 5.

【 参考文献 】
  • [1]Hecker M, Lambeck S, Toepfer S, van Someren E, Guthke R: Gene regulatory network inference: Data integration in dynamic models—A review. Biosystems 2009, 96:86-103.
  • [2]Piek E, Sleumer LS, van Someren EP, Heuver L, Haan JRd, Grijs Id, Gilissen C, Hendriks JM, van Ravestein-van Os RI, Bauerschmidt S, Dechering KJ, van Zoelen EJ: Osteo-transcriptomics of human mesenchymal stem cells: accelerated gene expression and osteoblast differentiation induced by vitamin D reveals c-MYC as an enhancer of BMP2-induced osteogenesis. Bone 2010, 46(3):613-627.
  • [3]de Jong H: Modeling and simulation of genetic regulatory systems: a literature review. J Comput Biol 2002, 9:67-103.
  • [4]Bansal M, Belcastro V, Ambesi-Impiombato A, Di Bernardo D: How to infer gene networks from expression profiles. Mol Syst Biol 2007, 3:78.
  • [5]Guthke R, Möller U, Hoffmann M, Thies F, Töpfer S: Dynamic network reconstruction from gene expression data applied to immune response during bacterial infection. Bioinformatics 2005, 21(8):1626-1634.
  • [6]Toepfer S, Guthke R, Driesch D, Woetzel D, Pfaff M: The NetGenerator algorithm: reconstruction of gene regulatory networks. In Lecture Notes in Computer Science. Edited by Tuyls K, Westra R, Saeys Y. Nowé A, Berlin and Heidelberg: Springer Berlin Heidelberg; 2007:119-130.
  • [7]Linde J, Wilson D, Hube B, Guthke R: Regulatory network modelling of iron acquisition by a fungal pathogen in contact with epithelial cells. BMC Syst Biol 2010, 4:148. BioMed Central Full Text
  • [8]Albrecht D, Kniemeyer O, Mech F, Gunzer M, Brakhage A, Guthke R: On the way toward systems biology of Aspergillus fumigatus infection. Int J Med Microbiol 2011, 301(5):453-459.
  • [9]R Development Core Team: R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria; 2008. [http://www.R-project.org webcite]
  • [10]Ferrari F, Bortoluzzi S, Coppe A, Sirota A, Safran M, Shmoish M, Ferrari S, Lancet D, Danieli G, Bicciato S: Novel definition files for human GeneChips based on GeneAnnot. BMC Bioinformatics 2007, 8:446. BioMed Central Full Text
  • [11]Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, Speed TP: Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 2003, 4(2):249-264.
  • [12]Smyth GK: Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 2004, 3:Article3.
  • [13]Draper NR, Smith H: Applied regression analysis. A Wiley-Interscience publication, New, York: Wiley; 1998.
  • [14]Byrd RH, Lu P, Nocedal J, Zhu C: A limited memory algorithm for bound constrained optimization. SIAM J Sci Comput 1995, 16(5):1190.
  • [15]Yuryev A, Mulyukov Z, Kotelnikova E, Maslov S, Egorov S, Nikitin A, Daraselia N, Mazo I: Automatic pathway building in biological association networks. BMC Bioinf 2006, 7:171. BioMed Central Full Text
  • [16]Thomas-Chollier M, Defrance M, Medina-Rivera A, Sand O, Herrmann C, Thieffry D, van Helden J: RSAT 2011: regulatory sequence analysis tools. Nucleic Acids Res 2011, 39(Web Server issue):W86-W91.
  • [17]Matys V, Kel-Margoulis OV, Fricke E, Liebich I, Land S, Barre-Dirrie A, Reuter I, Chekmenev D, Krull M, Hornischer K, Voss N, Stegmaier P, Lewicki-Potapov B, Saxel H, Kel AE, Wingender E: TRANSFAC and its module TRANSCompel: transcriptional gene regulation in eukaryotes. Nucleic Acids Res 2006, 34(Database issue):D108-D110.
  • [18]Smedley D, Haider S, Ballester B, Holland R, London D, Thorisson G, Kasprzyk A: BioMart – biological queries made easy. BMC Genomics 2009, 10:22. BioMed Central Full Text
  • [19]Soetaert K, Petzoldt T, Setzer RW: Solving differential equations in R: package deSolve. J Stat Software 2010, 33(9):1-25.
  • [20]Gansner ER, North SC: An open graph visualization system and its applications to software engineering. Software–Practice and Experience 1999, 00:1-5.
  • [21]Hartmann C: Transcriptional networks controlling skeletal development. Curr Opin Genet Dev 2009, 19(5):437-443.
  • [22]Jin EJ, Lee SY, Choi YA, Jung JC, Bang OS, Kang SS: BMP-2-enhanced chondrogenesis involves p38 MAPK-mediated down-regulation of Wnt-7a pathway. Mol Cells 2006, 22(3):353-359.
  • [23]van der Kraan PM, Blaney Davidson EN, Blom A, van den Berg WB: TGF-beta signaling in chondrocyte terminal differentiation and osteoarthritis: modulation and integration of signaling pathways through receptor-Smads. Osteoarthritis and Cartilage / OARS, Osteoarthritis Res Soc 2009, 17(12):1539-1545.
  • [24]Sekiya I, Tsuji K, Koopman P, Watanabe H, Yamada Y, Shinomiya K, Nifuji A, Noda M: SOX9 enhances aggrecan gene promoter/enhancer activity and is up-regulated by retinoic acid in a cartilage-derived cell line, TC6. J Biol Chem 2000, 275(15):10738-10744.
  • [25]Yamashita S, Andoh M, Ueno-Kudoh H, Sato T, Miyaki S, Asahara H: Sox9 directly promotes Bapx1 gene expression to repress Runx2 in chondrocytes. Exp Cell Res 2009, 315(13):2231-2240.
  • [26]Oh Cd, Maity SN, Lu JF, Zhang J, Liang S, Coustry F, Crombrugghe Bd, Yasuda H: Identification of SOX9 interaction sites in the genome of chondrocytes. PLoS ONE 2010, 5(4):e10113.
  • [27]Craft AM, Krisky DM, Wechuck JB, Lobenhofer EK, Jiang Y, Wolfe DP, Glorioso JC: Herpes simplex virus-mediated expression of Pax3 and MyoD in embryoid bodies results in lineage-related alterations in gene expression profiles. Stem Cells 2008, 26(12):3119-3129.
  • [28]Meyer PE, Lafitte F, Bontempi G: minet: A R/Bioconductor package for inferring large transcriptional networks using mutual information. BMC Bioinf 2008, 9:461. BioMed Central Full Text
  • [29]Kauffman S: Metabolic stability and epigenesis in randomly constructed genetic nets. J Theor Biol 1969, 22(3):437-467.
  • [30]D’haeseleer P, Wen X, Somogyi R, Fuhrman S: Linear modeling of mRNA expression levels during CNS development and injury. Pac Symp Biocomput 1999, 4:41-52.
  • [31]Altwasser R, Linde J, Buyko E, Hahn U, Guthke R: Genome-wide scale-free network inference for Candida albicans. Frontiers Microbiol 2012, 3:51.
  • [32]Gustafsson M, Hornquist M, Lombardi A: Constructing and analyzing a large-scale gene-to-gene regulatory network–Lasso-constrained inference and biological validation. IEEE/ACM Transac Comput Biol Bioinf 2005, 2(3):254-261.
  • [33]Tibshirani R: Regression shrinkage and selection via the Lasso. J R Stat Soc: Ser B (Stat Methodology) 1996, 58:267-288.
  • [34]van Someren E, Wessels L, Reinders M, Backer E: Regularization and noise injection for improving genetic network models. In Computational and Statistical Approaches to Genomics. Edited by Zhang W, Shmulevich I. NJ, USA: World Scientific Publishing Co.; 2002:211-226.
  • [35]Bonneau R, Reiss DJ, Shannon P, Facciotti M, Hood L, Baliga NS, Thorsson V: The Inferelator: an algorithm for learning parsimonious regulatory networks from systems-biology data sets de novo. Genome Biol 2006, 7(5):R36. BioMed Central Full Text
  • [36]Hecker M, Goertsches R, Engelmann R, Thiesen HJ, Guthke R: Integrative modeling of transcriptional regulation in response to antirheumatic therapy. BMC Bioinformatics 2009, 10:262. BioMed Central Full Text
  • [37]Bansal M, Gatta GD, Di Bernardo D: Inference of gene regulatory networks and compound mode of action from time course gene expression profiles. Bioinformatics 2006, 22(7):815-822.
  • [38]Wang Y, Joshi T, Zhang XS, Xu D, Chen L: Inferring gene regulatory networks from multiple microarray datasets. Bioinformatics 2006, 22(19):2413-2420.
  • [39]Gupta R, Stincone A, Antczak P, Durant S, Bicknell R, Bikfalvi A, Falciani F: A computational framework for gene regulatory network inference that combines multiple methods and datasets. BMC Syst Biol 2011, 5:52. BioMed Central Full Text
  • [40]Weaver DC, Workman CT, Stormo GD: Modeling regulatory networks with weight matrices. Pac Symp Biocomput 1999, 4:112-123.
  • [41]Wahde M, Hertz J: Coarse-grained reverse engineering of genetic regulatory networks. Biosystems 2000, 55(1-3):129-136.
  • [42]Mjolsness E, Mann T, Castaño R, Wold B: From coexpression to coregulation: An approach to inferring transcriptional regulation among gene classes from large-scale expression data. In Advances in Neural Information Processing Systems, Volume 12. Edited by Solla SA, Leen TK. Müller KR: MIT Press; 2000:928-934.
  文献评价指标  
  下载次数:167次 浏览次数:18次