期刊论文详细信息
BMC Public Health
REGSTATTOOLS: freeware statistical tools for the analysis of disease population databases used in health and social studies
Josepa Ribes4  Jaume Galcerán1  Ángel Izquierdo2  Xavier Sanz3  Josep Maria Escribà3  Laura Pareja3  Jordi Gálvez3  Ramon Clèries4  Laura Esteban3 
[1] Tarragona Cancer Registry. Foundation Society for Cancer research and Prevention, Pere Virgili Health Research Institute, Reus 43201, Spain;Epidemiology Unit and Cancer Registry of Girona, Institut Català d’Oncologia (ICO), Girona 17004, Catalonia, Spain;Cancer Registry of Catalonia, Plan for Oncology of the Catalan Government, IDIBELL, Hospital Duran i Reynals. Av. Gran Via de l’Hospitalet, 199-203, 08908 – L’Hospitalet de Llobregat, Catalonia, Spain;Department of Clinical Sciences, University of Barcelona, Barcelona 08907, Spain
关键词: Relative survival;    Net percent change of rates;    Annual percent change;    Standardized incidence mortality ratio;    Prediction;    Web-application;   
Others  :  1162478
DOI  :  10.1186/1471-2458-13-201
 received in 2012-07-24, accepted in 2013-02-27,  发布年份 2013
PDF
【 摘 要 】

Background

The repertoire of statistical methods dealing with the descriptive analysis of the burden of a disease has been expanded and implemented in statistical software packages during the last years. The purpose of this paper is to present a web-based tool, REGSTATTOOLShttp://regstattools.net webcite intended to provide analysis for the burden of cancer, or other group of disease registry data. Three software applications are included in REGSTATTOOLS: SART (analysis of disease’s rates and its time trends), RiskDiff (analysis of percent changes in the rates due to demographic factors and risk of developing or dying from a disease) and WAERS (relative survival analysis).

Results

We show a real-data application through the assessment of the burden of tobacco-related cancer incidence in two Spanish regions in the period 1995–2004. Making use of SART we show that lung cancer is the most common cancer among those cancers, with rising trends in incidence among women. We compared 2000–2004 data with that of 1995–1999 to assess percent changes in the number of cases as well as relative survival using RiskDiff and WAERS, respectively. We show that the net change increase in lung cancer cases among women was mainly attributable to an increased risk of developing lung cancer, whereas in men it is attributable to the increase in population size. Among men, lung cancer relative survival was higher in 2000–2004 than in 1995–1999, whereas it was similar among women when these time periods were compared.

Conclusions

Unlike other similar applications, REGSTATTOOLS does not require local software installation and it is simple to use, fast and easy to interpret. It is a set of web-based statistical tools intended for automated calculation of population indicators that any professional in health or social sciences may require.

【 授权许可】

   
2013 Esteban et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150413065713611.pdf 906KB PDF download
Figure 4. 45KB Image download
Figure 3. 38KB Image download
Figure 2. 39KB Image download
Figure 1. 74KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Tomatis L, Aitio A, Day N, Heseltine E, Kaldor J, Miller A, Parkin D, Riboli E: Cancer: causes,occurrence and control. Lyon: IARC Scientific Publications Nr 100; 1990.
  • [2]Esteve J, Benhamou E, Raymond L: Statistical methods in cancer research. Descriptive epidemiology. IARC Sci Publ 1994, IV:1-302.
  • [3]Bray F, Moller B: Predicting the future burden of cancer. Nat Rev Cancer 2006, 6:63-74.
  • [4]Surveillance Research Program, N. C. I. S. s. v. 7. 0. 5: Surveillance research program, national cancer institute SEER*stat software. http://www.seer.cancer.gov/seerstat webcite. 2011. 17-12-0012 Ref Type: Electronic Citation
  • [5]De Angelis G, De Angelis R, Frova L, Verdecchia A: MIAMOD: a computer package to estimate chronic disease morbidity using mortality and survival data. Comput Methods Programs Biomed 1994, 44:99-107.
  • [6]Verdecchia A, De Angelis G, Capocaccia R: Estimation and projections of cancer prevalence from cancer registry data. Stat Med 2002, 21:3511-3526.
  • [7]Schmid V, Held L: Bayesian age-period-cohort modeling and prediction - BAMP. J Stat Softw 2007, 21(8):1-15.
  • [8]Kim HJ, Fay MP, Feuer EJ, Midthume DN: Permutation tests for joinpoint regression with applications to cancer rates. Stat Med 2000, 19:335-351.
  • [9]Dickman PW, Hakulinen T, Voutilaninen ET: SURV3, Relative survival analysis. 2000. Ref Type: Unpublished Work
  • [10]Yu B, Tiwari RC, Cronin KA, McDonald C, Feuer EJ: CANSURV: a windows program for population-based cancer survival analysis. Comput Methods Programs Biomed 2005, 80:195-203.
  • [11]Geiss K, Meyer M, Radespiel-Troger M, Gefeller O: SURVSOFT-Software for nonparametric survival analysis. Comput Methods Programs Biomed 2009, 96:63-71.
  • [12]Segi M, FUKUSHIMA I, Kurihara M: A proposal on a calculation method to be applied by geographical comparison of cancer mortality. Tohoku J Exp Med 1954, 60:307-310.
  • [13]Rothman KJ, Greenland S: Modern epidemiology. Philadelphia: Lippincott Williams & Wilkins; 1998.
  • [14]Bray F: Age-standardization. In Cancer incidence in five continents, volume VIII. IARC scientific publications No. 155. Edited by Parkin DM, Whelan SL, Ferlay J, Teppo L, Thomas DB. Lyon: International Agency for Research on Cancer; 2002:87-89.
  • [15]Estève J, Benhamou E, Raymond L: Statistical Methods in Cancer Research (Vol. IV). Lyon: IARC Scientific Publications, No 128; 1994.
  • [16]Hakulinen T, Hakama M: Predictions of epidemiology and the evaluation of cancer control measures and the setting of policy priorities. Soc Sci Med 1991, 33:1379-1383.
  • [17]Dyba T, Hakulinen T: Comparison of different approaches to incidence prediction based on simple interpolation techniques. Stat Med 2000, 19:1741-1752.
  • [18]McCullagh P, Nelder J: Generalized linear models. London: Chapman & Hall; 1989.
  • [19]Akaike H: IEEE transactions on automatic control 19. IEEE Trans Autom Control 1974, 19(6):716-723.
  • [20]Bashir SA, Estève J: Projecting cancer incidence and mortality using Bayesian age-period-cohort models. J Epidemiol Bioestat 2001, 6:287-296.
  • [21]Ederer F, Axtell LM, Cutler SJ: The relative survival rate: a statistical methodology. Natl Cancer Inst Monogr 1961, 6:101-121.
  • [22]Hakulinen T: Cancer survival corrected for heterogeneity in patient withdrawal. Biometrics 1982, 38:933-942.
  • [23]Cleries R, Ribes J, Moreno V, Esteban L, Pareja L, Galvez J, Martinez JM, Bosch FX, Borras JM: Relative survival computation. Comparison of methods for estimating expected survival. Gac Sanit 2006, 20:325-331.
  • [24]Perme MP, Stare J, Esteve J: On estimation in relative survival. Biometrics 2012, 68:113-120.
  • [25]Galceran J, Puigdefabregas A, Ribas G, Izquierdo A, Pareja L, Marcos-Gragera R: [Cancer survival trends in Catalonia and comparison with Europe]. Med Clin (Barc.) 2008, 131(Suppl 1):19-24.
  • [26]Gispert R, Cleries R, Puigdefabregas A, Freitas A, Esteban L, Ribes J: [Cancer mortality trends in Catalonia, 1985–2004. Med Clin (Barc.) 2008, 131(Suppl 1):25-31.
  • [27]Esteban L, Cleries R, Langohr K, Galvez J, Pareja L, Escriba JM, Ribes J: [Statistical analysis of rates and trends (SART): a web-based tool for statistical calculation of population indicators]. Gac Sanit 2011, 25:427-431.
  • [28]Valls J, Cleries R, Galvez J, Moreno V, Gispert R, Borras JM, Ribes JRD: A web tool for the analysis of the difference due to risk and demographic factors for incidence or mortality data. BMC Publ Health 2009, 9:473. BioMed Central Full Text
  • [29]Cleries R, Valls J, Esteban L, Galvez J, Pareja L, Sanz X, Alliste L, Martinez JM, Moreno V, Bosch X, Borras JM, Ribes JM: WAERS: an application for Web-assisted estimation of relative survival. Med Inform Internet Med 2007, 32:169-175.
  • [30]Davis ME, Phillips JA: Learning PHP and MySQL. California, US: O’ReillyMedia Inc. Gravenstein; 2007.
  • [31]R Development Core Team: R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; c. http://www.R-project.org webcite. 2008 Ref Type: Electronic Citation
  文献评价指标  
  下载次数:33次 浏览次数:15次