期刊论文详细信息
BMC Genomics
Genomic analysis of the emergence of 20th century epidemic dysentery
Samuel I Miller5  Kyle R Hager3  Susana Matamouros3  Elizabeth H Sims-Day3  John M Kemner3  Anthony J Hager3  Kaisar Ali Talukder4  Yves Germani2  Matthew Radey3  Eli J Weiss3  Didier Hocquet1  Hillary S Hayden3  Christine Fong3  Mitchell J Brittnacher3  Michael A Jacobs3  Laurence Rohmer3 
[1] UMR6249 Chrono-Environnement, Université de Franche-Comté, Besançon, France;Institut Pasteur, Paris, France;Department of Microbiology, University of Washington, Seattle, WA, USA;International Centre for Diarrheal Disease Research, Dhaka, Bangladesh;Department of Medicine, University of Washington, Seattle, WA, USA
关键词: Pandemic;    Human carrier;    Genomic adaptation;    Antibiotic resistance;    Phylogeny;    Genome evolution;    Dysentery;    Shigella dysenteriae;   
Others  :  1217243
DOI  :  10.1186/1471-2164-15-355
 received in 2013-10-04, accepted in 2014-04-15,  发布年份 2014
PDF
【 摘 要 】

Background

Shigella dysenteriae type 1 (Sd1) causes recurrent epidemics of dysentery associated with high mortality in many regions of the world. Sd1 infects humans at very low infectious doses (10 CFU), and treatment is complicated by the rapid emergence of antibiotic resistant Sd1 strains. Sd1 is only detected in the context of human infections, and the circumstances under which epidemics emerge and regress remain unknown.

Results

Phylogenomic analyses of 56 isolates collected worldwide over the past 60 years indicate that the Sd1 clone responsible for the recent pandemics emerged at the turn of the 20th century, and that the two world wars likely played a pivotal role for its dissemination. Several lineages remain ubiquitous and their phylogeny indicates several recent intercontinental transfers. Our comparative genomics analysis reveals that isolates responsible for separate outbreaks, though closely related to one another, have independently accumulated antibiotic resistance genes, suggesting that there is little or no selection to retain these genes in-between outbreaks. The genomes appear to be subjected to genetic drift that affects a number of functions currently used by diagnostic tools to identify Sd1, which could lead to the potential failure of such tools.

Conclusions

Taken together, the Sd1 population structure and pattern of evolution suggest a recent emergence and a possible human carrier state that could play an important role in the epidemic pattern of infections of this human-specific pathogen. This analysis highlights the important role of whole-genome sequencing in studying pathogens for which epidemiological or laboratory investigations are particularly challenging.

【 授权许可】

   
2014 Rohmer et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150705193531248.pdf 3705KB PDF download
Figure 4. 127KB Image download
Figure 3. 117KB Image download
Figure 2. 93KB Image download
Figure 1. 58KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Barry EM, Pasetti MF, Sztein MB, Fasano A, Kotloff KL, Levine MM: Progress and pitfalls in Shigella vaccine research. Nat Rev Gastroenterol Hepatol 2013, 10(4):245-255.
  • [2]Bhattacharya SK, Sarkar K, Balakrish Nair G, Faruque AS, Sack DA: Multidrug-resistant Shigella dysenteriae type 1 in south Asia. Lancet Infect Dis 2003, 3(12):755.
  • [3]Levine MM, Kotloff KL, Barry EM, Pasetti MF, Sztein MB: Clinical trials of Shigella vaccines: two steps forward and one step back on a long, hard road. Nat Rev Microbiol 2007, 5(7):540-553.
  • [4]Trofa AF, Ueno-Olsen H, Oiwa R, Yoshikawa M: Dr. Kiyoshi Shiga: discoverer of the dysentery bacillus. Clin Infect Dis 1999, 29(5):1303-1306.
  • [5]Niyogi SK: Shigellosis. J Microbiol 2005, 43(2):133-143.
  • [6]ᅟ ᅟ: Shigella dysenteriae type 1--Guatemala, 1991. MMWR Morb Mortal Wkly Rep 1991, 40(25):421. 427–428. http://www.cdc.gov/mmwr/preview/mmwrhtml/00014537.htm webcite
  • [7]Germani Y, Cunin P, Tedjouka E, Ncharre CB, Morvan J, Martin P: Enterohaemorrhagic Escherichia coli in Ngoila (Cameroon) during an outbreak of bloody diarrhoea. Lancet 1998, 352(9128):625-626.
  • [8]Emch M, Ali M, Yunus M: Risk areas and neighborhood-level risk factors for Shigella dysenteriae 1 and Shigella flexneri. Health Place 2008, 14(1):96-105.
  • [9]Pupo GM, Lan R, Reeves PR: Multiple independent origins of Shigella clones of Escherichia coli and convergent evolution of many of their characteristics. Proc Natl Acad Sci U S A 2000, 97(19):10567-10572.
  • [10]Lan R, Reeves PR: Escherichia coli in disguise: molecular origins of Shigella. Microbes Infect 2002, 4(11):1125-1132.
  • [11]Touchon M, Hoede C, Tenaillon O, Barbe V, Baeriswyl S, Bidet P, Bingen E, Bonacorsi S, Bouchier C, Bouvet O, Calteau A, Chiapello H, Clermont O, Cruveiller S, Danchin A, Diard M, Dossat C, Karoui ME, Frapy E, Garry L, Ghigo JM, Gilles AM, Johnson J, Le Bouguénec C, Lescat M, Mangenot S, Martinez-Jéhanne V, Matic I, Nassif X, Oztas S, et al.: Organised genome dynamics in the Escherichia coli species results in highly diverse adaptive paths. PLoS Genet 2009, 5(1):e1000344.
  • [12]Bliven KA, Maurelli AT: Antivirulence genes: insights into pathogen evolution through gene loss. Infect Immun 2012, 80(12):4061-4070.
  • [13]Lan R, Stevenson G, Reeves PR: Comparison of two major forms of the Shigella virulence plasmid pINV: positive selection is a major force driving the divergence. Infect Immun 2003, 71(11):6298-6306.
  • [14]Levine MM, DuPont HL, Formal SB, Hornick RB, Takeuchi A, Gangarosa EJ, Snyder MJ, Libonati JP: Pathogenesis of Shigella dysenteriae 1 (Shiga) dysentery. J Infect Dis 1973, 127(3):261-270.
  • [15]World Health Organization. Dept. of Immunization Vaccines and Biologicals: Guidelines for the control of shigellosis, including epidemics due to Shigella dysenteriae type 1. Geneva: World Health Organization; 2005.
  • [16]Mata LJ, Gangarosa EJ, Caceres A, Perera DR, Mejicanos ML: Epidemic Shiga bacillus dysentery in Central America. I. Etiologic investigations in Guatemala, 1969. J Infect Dis 1970, 122(3):170-180.
  • [17]Tuttle J, Ries AA, Chimba RM, Perera CU, Bean NH, Griffin PM: Antimicrobial-resistant epidemic Shigella dysenteriae type 1 in Zambia: modes of transmission. J Infect Dis 1995, 171(2):371-375.
  • [18]Cunin P, Tedjouka E, Germani Y, Ncharre C, Bercion R, Morvan J, Martin PM: An epidemic of bloody diarrhea: Escherichia coli O157 emerging in Cameroon? Emerg Infect Dis 1999, 5(2):285-290.
  • [19]Germani Y, Minssart P, Vohito M, Yassibanda S, Glaziou P, Hocquet D, Berthelemy P, Morvan J: Etiologies of acute, persistent, and dysenteric diarrheas in adults in Bangui, Central African Republic, in relation to human immunodeficiency virus serostatus. Am J Trop Med Hyg 1998, 59(6):1008-1014.
  • [20]Talukder KA, Khajanchi BK, Islam MA, Dutta DK, Islam Z, Safa A, Khan GY, Alam K, Hossain MA, Malla S, Niyogi SK, Rahman M, Watanabe H, Nair GB, Sack DA: Genetic relatedness of ciprofloxacin-resistant Shigella dysenteriae type 1 strains isolated in south Asia. J Antimicrob Chemother 2004, 54(4):730-734.
  • [21]Taylor DN, Bodhidatta L, Brown JE, Echeverria P, Kunanusont C, Naigowit P, Hanchalay S, Chatkaeomorakot A, Lindberg AA: Introduction and spread of multi-resistant Shigella dysenteriae I in Thailand. AmJTrop Med Hyg 1989, 40(1):77-85.
  • [22]Yang F, Yang J, Zhang X, Chen L, Jiang Y, Yan Y, Tang X, Wang J, Xiong Z, Dong J, Xue Y, Zhu Y, Xu X, Sun L, Chen S, Nie H, Peng J, Xu J, Wang Y, Yuan Z, Wen Y, Yao Z, Shen Y, Qiang B, Hou Y, Yu J, Jin Q: Genome dynamics and diversity of Shigella species, the etiologic agents of bacillary dysentery. Nucleic Acids Res 2005, 33(19):6445-6458.
  • [23]Brittnacher MJ, Fong C, Hayden HS, Jacobs MA, Radey M, Rohmer L: PGAT: a multistrain analysis resource for microbial genomes. Bioinformatics 2011, 27(17):2429-2430.
  • [24]Parsot C: Shigella spp. and enteroinvasive Escherichia coli pathogenicity factors. FEMS Microbiol Lett 2005, 252(1):11-18.
  • [25]Didelot X, Meric G, Falush D, Darling AE: Impact of homologous and non-homologous recombination in the genomic evolution of Escherichia coli. BMC Genomics 2012, 13:256. BioMed Central Full Text
  • [26]Drummond AJ, Rambaut A: BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 2007, 7:214. BioMed Central Full Text
  • [27]Baele G, Li WL, Drummond AJ, Suchard MA, Lemey P: Accurate model selection of relaxed molecular clocks in Bayesian phylogenetics. Mol Biol Evol 2013, 30:239-243.
  • [28]Minin VN, Bloomquist EW, Suchard MA: Smooth skyride through a rough skyline: Bayesian coalescent-based inference of population dynamics. Mol Biol Evol 2008, 25(7):1459-1471.
  • [29]Holt KE, Baker S, Weill FX, Holmes EC, Kitchen A, Yu J, Sangal V, Brown DJ, Coia JE, Kim DW, Choi SY, Kim SH, da Silveira WD, Pickard DJ, Farrar JJ, Parkhill J, Dougan G, Thomson NR: Shigella sonnei genome sequencing and phylogenetic analysis indicate recent global dissemination from Europe. Nat Genet 2012, 44:1056-1059.
  • [30]Holt KE, Dolecek C, Chau TT, Duy PT, La TT, Hoang NV, Nga TV, Campbell JI, Manh BH, Vinh Chau NV, Hien TT, Farrar J, Dougan G, Baker S: Temporal fluctuation of multidrug resistant salmonella typhi haplotypes in the mekong river delta region of Vietnam. PLoS Negl Trop Dis 2011, 5(1):e929.
  • [31]Holt KE, Parkhill J, Mazzoni CJ, Roumagnac P, Weill FX, Goodhead I, Rance R, Baker S, Maskell DJ, Wain J, Dolecek C, Achtman M, Dougan G: High-throughput sequencing provides insights into genome variation and evolution in Salmonella Typhi. Nat Genet 2008, 40(8):987-993.
  • [32]Roumagnac P, Weill FX, Dolecek C, Baker S, Brisse S, Chinh NT, Le TA, Acosta CJ, Farrar J, Dougan G, Achtman M: Evolutionary history of Salmonella typhi. Science 2006, 314(5803):1301-1304.
  • [33]Okoro CK, Kingsley RA, Connor TR, Harris SR, Parry CM, Al-Mashhadani MN, Kariuki S, Msefula CL, Gordon MA, de Pinna E, Wain J, Heyderman RS, Obaro S, Alonso PL, Mandomando I, MacLennan CA, Tapia MD, Levine MM, Tennant SM, Parkhill J, Dougan G: Intracontinental spread of human invasive Salmonella Typhimurium pathovariants in sub-Saharan Africa. Nat Genet 2012, 44(11):1215-1221.
  • [34]Heisig P: Genetic evidence for a role of parC mutations in development of high-level fluoroquinolone resistance in Escherichia coli. Antimicrob Agents Chemother 1996, 40(4):879-885.
  • [35]Talukder KA, Khajanchi BK, Islam MA, Islam Z, Dutta DK, Rahman M, Watanabe H, Nair GB, Sack DA: Fluoroquinolone resistance linked to both gyrA and parC mutations in the quinolone resistance-determining region of Shigella dysenteriae type 1. Curr Microbiol 2006, 52(2):108-111.
  • [36]Naheed A, Kalluri P, Talukder KA, Faruque AS, Khatun F, Nair GB, Mintz ED, Breiman RF: Fluoroquinolone-resistant Shigella dysenteriae type 1 in northeastern Bangladesh. Lancet Infect Dis 2004, 4(10):607-608.
  • [37]Tam V: Lipomic profiling of bioactive lipids by mass spectrometry during microbial infections. Semin Immunol 2013, 25:240-248.
  • [38]Kunne C, Billion A, Mshana SE, Schmiedel J, Domann E, Hossain H, Hain T, Imirzalioglu C, Chakraborty T: Complete sequences of plasmids from the hemolytic-uremic syndrome-associated Escherichia coli strain HUSEC41. J Bacteriol 2012, 194(2):532-533.
  • [39]Luck SN, Turner SA, Rajakumar K, Sakellaris H, Adler B: Ferric dicitrate transport system (Fec) of Shigella flexneri 2a YSH6000 is encoded on a novel pathogenicity island carrying multiple antibiotic resistance genes. Infect Immun 2001, 69(10):6012-6021.
  • [40]Ye C, Lan R, Xia S, Zhang J, Sun Q, Zhang S, Jing H, Wang L, Li Z, Zhou Z, Zhao A, Cui Z, Cao J, Jin D, Huang L, Wang Y, Luo X, Bai X, Wang Y, Wang P, Xu Q, Xu J: Emergence of a new multidrug-resistant serotype X variant in an epidemic clone of Shigella flexneri. J Clin Microbiol 2010, 48(2):419-426.
  • [41]Gutacker MM, Mathema B, Soini H, Shashkina E, Kreiswirth BN, Graviss EA, Musser JM: Single-nucleotide polymorphism-based population genetic analysis of Mycobacterium tuberculosis strains from 4 geographic sites. J Infect Dis 2006, 193(1):121-128.
  • [42]Zhu P, van der Ende A, Falush D, Brieske N, Morelli G, Linz B, Popovic T, Schuurman IG, Adegbola RA, Zurth K, Gagneux S, Platonov AE, Riou JY, Caugant DA, Nicolas P, Achtman M: Fit genotypes and escape variants of subgroup III Neisseria meningitidis during three pandemics of epidemic meningitis. Proc Natl Acad Sci U S A 2001, 98(9):5234-5239.
  • [43]Achtman M, Morelli G, Zhu P, Wirth T, Diehl I, Kusecek B, Vogler AJ, Wagner DM, Allender CJ, Easterday WR, Chenal-Francisque V, Worsham P, Thomson NR, Parkhill J, Lindler LE, Carniel E, Keim P: Microevolution and history of the plague bacillus, Yersinia pestis. Proc Natl Acad Sci U S A 2004, 101(51):17837-17842.
  • [44]Dutta S, Ghosh A, Ghosh K, Dutta D, Bhattacharya SK, Nair GB, Yoshida S: Newly emerged multiple-antibiotic-resistant Shigella dysenteriae type 1 strains in and around Kolkata, India, are clonal. J Clin Microbiol 2003, 41(12):5833-5834.
  • [45]Levine MM, DuPont HL, Khodabandelou M, Hornick RB: Long-term Shigella-carrier state. N Engl J Med 1973, 288(22):1169-1171.
  • [46]Levine MM, Robins-Browne RM: Factors that explain excretion of enteric pathogens by persons without diarrhea. Clin Infect Dis 2012, 55(Suppl 4):S303-311.
  • [47]Hayden HS, Lim R, Brittnacher MJ, Sims EH, Ramage ER, Fong C, Wu Z, Crist E, Chang J, Zhou Y, Radey M, Rohmer L, Haugen E, Gillett W, Wuthiekanun V, Peacock SJ, Kaul R, Miller SI, Manoil C, Jacobs MA: Evolution of Burkholderia pseudomallei in recurrent melioidosis. PLoS One 2012, 7(5):e36507.
  • [48]Zerbino DR, Birney E: Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 2008, 18(5):821-829.
  • [49]Li H, Durbin R: Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009, 25(14):1754-1760.
  • [50]Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R: The sequence alignment/map format and SAMtools. Bioinformatics 2009, 25(16):2078-2079.
  • [51]Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu C, Salzberg SL: Versatile and open software for comparing large genomes. Genome Biol 2004, 5(2):R12. BioMed Central Full Text
  • [52]Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW, Hauser LJ: Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinforma 2010, 11:119. BioMed Central Full Text
  • [53]Hunter S, Apweiler R, Attwood TK, Bairoch A, Bateman A, Binns D, Bork P, Das U, Daugherty L, Duquenne L, Finn RD, Gough J, Haft D, Hulo N, Kahn D, Kelly E, Laugraud A, Letunic I, Lonsdale D, Lopez R, Madera M, Maslen J, McAnulla C, McDowall J, Mistry J, Mitchell A, Mulder N, Natale D, Orengo C, Quinn AF, et al.: InterPro: the integrative protein signature database. Nucleic Acids Res 2009, 37(Database issue):D211-215.
  • [54]Marchler-Bauer A, Lu S, Anderson JB, Chitsaz F, Derbyshire MK, DeWeese-Scott C, Fong JH, Geer LY, Geer RC, Gonzales NR, Gwadz M, Hurwitz DI, Jackson JD, Ke Z, Lanczycki CJ, Lu F, Marchler GH, Mullokandov M, Omelchenko MV, Robertson CL, Song JS, Thanki N, Yamashita RA, Zhang D, Zhang N, Zheng C, Bryant SH: CDD: a conserved domain database for the functional annotation of proteins. Nucleic Acids Res 2011, 39(Database issue):D225-229.
  • [55]Liu B, Pop M: ARDB–antibiotic resistance genes database. Nucleic Acids Res 2009, 37(Database issue):D443-447.
  • [56]Zhou CE, Smith J, Lam M, Zemla A, Dyer MD, Slezak T: MvirDB–a microbial database of protein toxins, virulence factors and antibiotic resistance genes for bio-defence applications. Nucleic Acids Res 2007, 35(Database issue):D391-394.
  • [57]Tatusov RL, Fedorova ND, Jackson JD, Jacobs AR, Kiryutin B, Koonin EV, Krylov DM, Mazumder R, Mekhedov SL, Nikolskaya AN, Rao BS, Smirnov S, Sverdlov AV, Vasudevan S, Wolf YI, Yin JJ, Natale DA: The COG database: an updated version includes eukaryotes. BMC Bioinforma 2003, 4:41. BioMed Central Full Text
  • [58]Edgar RC: MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004, 32(5):1792-1797.
  • [59]Sawyer S: Statistical tests for detecting gene conversion. Mol Biol Evol 1989, 6(5):526-538.
  • [60]Guindon S, Delsuc F, Dufayard JF, Gascuel O: Estimating maximum likelihood phylogenies with PhyML. Methods Mol Biol 2009, 537:113-137.
  • [61]Huson DH, Richter DC, Rausch C, Dezulian T, Franz M, Rupp R: Dendroscope: an interactive viewer for large phylogenetic trees. BMC Bioinforma 2007, 8:460. BioMed Central Full Text
  • [62]Posada D: jModelTest: phylogenetic model averaging. Mol Biol Evol 2008, 25(7):1253-1256.
  • [63]Yang Z: PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 2007, 24(8):1586-1591.
  • [64]Yang Z, Nielsen R: Estimating synonymous and nonsynonymous substitution rates under realistic evolutionary models. Mol Biol Evol 2000, 17(1):32-43.
  文献评价指标  
  下载次数:10次 浏览次数:4次