期刊论文详细信息
BMC Complementary and Alternative Medicine
Transcriptional profiling of Chinese medicinal formula Si-Wu-Tang on breast cancer cells reveals phytoestrogenic activity
Ying Huang4  Zhining Wen3  Leming Shi2  Moses SS Chow4  Zhong Zuo5  Charles Wang1  Zhijun Wang4  Steven Wang4  Jeffery Fan4  Mandy Liu4 
[1] Functional Genomics Core, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California;Department of Clinical Pharmacy and Center for Pharmacogenomics, School of Pharmacy, Fudan University, Shanghai, China;College of Chemistry, Sichuan University, Chengdu, Sichuan, China;Department of Pharmaceutical Sciences and Center for Advancement of Drug Research, College of Pharmacy, Western University of Health Sciences, Pomona, California;School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
关键词: Transcriptional profiling;    Herbal medicines;    Breast cancer;    Chemoprevention;    Genomics;    Microarrays;    Phytoestrogens;   
Others  :  1231165
DOI  :  10.1186/1472-6882-13-11
 received in 2012-10-26, accepted in 2013-01-08,  发布年份 2013
PDF
【 摘 要 】

Background

Si-Wu-Tang (SWT), comprising the combination of four herbs, Paeoniae, Angelicae, Chuanxiong and Rehmanniae, is one of the most popular traditional oriental medicines for women’s diseases. In our previous study, the microarray gene expression profiles of SWT on breast cancer cell line MCF-7 were found similar to the effect of β-estradiol (E2) on MCF-7 cells in the Connectivity Map database.

Methods

Further data analysis was conducted to find the main similarities and differences between the effects of SWT and E2 on MCF-7 gene expression. The cell proliferation assay on MCF-7 (ER-positive) and MDA-MB-231 (ER-negative) cells were used to examine such estrogenic activity. The estrogenic potency of SWT was further confirmed by estrogen-responsive element (ERE) luciferase reporter assay in MCF-7 cells.

Results

Many estrogen regulated genes strongly up-regulated by E2 were similarly up-regulated by SWT, e.g., GREB1, PGR and EGR3. Of interest with regard to safety of SWT, the oncogenes MYBL1 and RET were strongly induced by E2 but not by SWT. Quantitative RT-PCR analysis revealed a highly concordant expression change in selected genes with data obtained by microarrays. Further supporting SWT’s estrogenic activity, in MCF-7 but not in MDA-MB-231 cells, SWT stimulated cell growth at lower concentrations (< 3.0 mg/ml), while at high concentrations, it inhibits the growth of both cell lines. The growth inhibitory potency of SWT was significantly higher in MDA-MB-231 than in MCF-7 cells. The SWT-induced cell growth of MCF-7 could be blocked by addition of the estrogen receptor antagonist tamoxifen. In addition, SWT was able to activate the ERE activity at lower concentrations. The herbal components Angelicae, Chuanxiong and Rehmanniae at lower concentrations (< 3.0 mg/ml) also showed growth-inducing and ERE-activating activity in MCF-7 cells.

Conclusions

These results revealed a new mechanism to support the clinical use of SWT for estrogen related diseases and possibly for cancer prevention. This study also demonstrated the feasibility of using microarray transcriptional profiling to discover phytoestrogenic components that are present in natural products.

【 授权许可】

   
2013 Liu et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20151109071604102.pdf 2197KB PDF download
Figure 10. 51KB Image download
Figure 9. 77KB Image download
Figure 8. 48KB Image download
Figure 7. 64KB Image download
Figure 6. 31KB Image download
Figure 5. 55KB Image download
Figure 4. 60KB Image download
Figure 3. 98KB Image download
Figure 2. 50KB Image download
Figure 1. 49KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

【 参考文献 】
  • [1]Wang ZJ, Wo SK, Wang L, Lau CB, Lee VH, Chow MS, Zuo Z: Simultaneous quantification of active components in the herbs and products of Si-Wu-Tang by high performance liquid chromatography-mass spectrometry. J Pharm Biomed Anal 2009, 50(2):232-244.
  • [2]Yeh LL, Liu JY, Lin KS, Liu YS, Chiou JM, Liang KY, Tsai TF, Wang LH, Chen CT, Huang CY: A randomised placebo-controlled trial of a traditional Chinese herbal formula in the treatment of primary dysmenorrhoea. PLoS One 2007, 2(1):e719.
  • [3]Ohta H, Ni JW, Matsumoto K, Watanabe H, Shimizu M: Peony and its major constituent, paeoniflorin, improve radial maze performance impaired by scopolamine in rats. Pharmacol Biochem Behav 1993, 45(3):719-723.
  • [4]Watanabe H: Protective effect of a traditional medicine, shimotsu-to, on brain lesion in rats. J Toxicol Sci 1998, 23(Suppl 2):234-236.
  • [5]Zhang H, Shen P, Cheng Y: Identification and determination of the major constituents in traditional Chinese medicine Si-Wu-Tang by HPLC coupled with DAD and ESI-MS. J Pharm Biomed Anal 2004, 34(3):705-713.
  • [6]Tagami K, Niwa K, Lian Z, Gao J, Mori H, Tamaya T: Preventive effect of Juzen-taiho-to on endometrial carcinogenesis in mice is based on Shimotsu-to constituent. Biol Pharm Bull 2004, 27(2):156-161.
  • [7]Hsu HY, Ho YH, Lin CC: Protection of mouse bone marrow by Si-WU-Tang against whole body irradiation. J Ethnopharmacol 1996, 52(2):113-117.
  • [8]Liang QD, Gao Y, Tan HL, Guo P, Li YF, Zhou Z, Tan W, Ma ZC, Ma BP, Wang SQ: Effects of four Si-Wu-Tang’s constituents and their combination on irradiated mice. Biol Pharm Bull 2006, 29(7):1378-1382.
  • [9]Niwa K, Hashimoto M, Morishita S, Lian Z, Tagami K, Mori H, Tamaya T: Preventive effects of Juzen-taiho-to on N-methyl-N-nitrosourea and estradiol-17beta-induced endometrial carcinogenesis in mice. Carcinogenesis 2001, 22(4):587-591.
  • [10]Lian Z, Niwa K, Onogi K, Mori H, Harrigan RC, Tamaya T: Anti-tumor effects of herbal medicines on endometrial carcinomas via estrogen receptor-alpha-related mechanism. Oncol Rep 2006, 15(5):1133-1136.
  • [11]Cheng JF, Lu ZY, Su YC, Chiang LC, Wang RY: A traditional Chinese herbal medicine used to treat dysmenorrhoea among Taiwanese women. J Clin Nurs 2008, 17(19):2588-2595.
  • [12]Wen Z, Wang Z, Wang S, Ravula R, Yang L, Xu J, Wang C, Zuo Z, Chow MS, Shi L, et al.: Discovery of molecular mechanisms of traditional Chinese medicinal formula Si-Wu-Tang using gene expression microarray and connectivity map. PLoS One 2011, 6(3):e18278.
  • [13]Lamb J, Crawford ED, Peck D, Modell JW, Blat IC, Wrobel MJ, Lerner J, Brunet JP, Subramanian A, Ross KN, et al.: The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease. Science 2006, 313(5795):1929-1935.
  • [14]Liu MM, Huang Y, Wang J: Developing Phytoestrogens for Breast Cancer Prevention. Anticancer Agents Med Chem 2012, 12(10):1306-1313.
  • [15]Syed DN, Khan N, Afaq F, Mukhtar H: Chemoprevention of prostate cancer through dietary agents: progress and promise. Cancer Epidemiol Biomarkers Prev 2007, 16(11):2193-2203.
  • [16]Buck K, Vrieling A, Zaineddin AK, Becker S, Husing A, Kaaks R, Linseisen J, Flesch-Janys D, Chang-Claude J: Serum enterolactone and prognosis of postmenopausal breast cancer. J Clin Oncol 2011, 29(28):3730-3738.
  • [17]Patisaul HB, Jefferson W: The pros and cons of phytoestrogens. Front Neuroendocrinol 2010, 31(4):400-419.
  • [18]Pitkin J: Alternative and complementary therapies for the menopause. Menopause Int 2012, 18(1):20-27.
  • [19]Ise R, Han D, Takahashi Y, Terasaka S, Inoue A, Tanji M, Kiyama R: Expression profiling of the estrogen responsive genes in response to phytoestrogens using a customized DNA microarray. FEBS Lett 2005, 579(7):1732-1740.
  • [20]Parveen M, Inoue A, Ise R, Tanji M, Kiyama R: Evaluation of estrogenic activity of phthalate esters by gene expression profiling using a focused microarray (EstrArray). Environ Toxicol Chem 2008, 27(6):1416-1425.
  • [21]Parveen M, Zhu Y, Kiyama R: Expression profiling of the genes responding to zearalenone and its analogues using estrogen-responsive genes. FEBS Lett 2009, 583(14):2377-2384.
  • [22]Terasaka S, Aita Y, Inoue A, Hayashi S, Nishigaki M, Aoyagi K, Sasaki H, Wada-Kiyama Y, Sakuma Y, Akaba S, et al.: Using a customized DNA microarray for expression profiling of the estrogen-responsive genes to evaluate estrogen activity among natural estrogens and industrial chemicals. Environ Health Perspect 2004, 112(7):773-781.
  • [23]Terasaka S, Inoue A, Tanji M, Kiyama R: Expression profiling of estrogen-responsive genes in breast cancer cells treated with alkylphenols, chlorinated phenols, parabens, or bis- and benzoylphenols for evaluation of estrogenic activity. Toxicol Lett 2006, 163(2):130-141.
  • [24]The state pharmacopoeia commission of P.R.China: Pharmacopoeia of the People’s REpublic of China. Beijing: Chemical Industry Press; 2005.
  • [25]Chang CJ, Chiu JH, Tseng LM, Chang CH, Chien TM, Chen CC, Wu CW, Lui WY: Si-Wu-Tang and its constituents promote mammary duct cell proliferation by up-regulation of HER-2 signaling. Menopause 2006, 13(6):967-976.
  • [26]Tong W, Cao X, Harris S, Sun H, Fang H, Fuscoe J, Harris A, Hong H, Xie Q, Perkins R, et al.: ArrayTrack--supporting toxicogenomic research at the U.S. Food and Drug Administration National Center for Toxicological Research. Environ Health Perspect 2003, 111(15):1819-1826.
  • [27]Eisen MB, Spellman PT, Brown PO, Botstein D: Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 1998, 95(25):14863-14868.
  • [28]Pham AN, Blower PE, Alvarado O, Ravula R, Gout PW, Huang Y: Pharmacogenomic approach reveals a role for the x(c)- cystine/glutamate antiporter in growth and celastrol resistance of glioma cell lines. J Pharmacol Exp Ther 2010, 332(3):949-958.
  • [29]Lin CY, Vega VB, Thomsen JS, Zhang T, Kong SL, Xie M, Chiu KP, Lipovich L, Barnett DH, Stossi F, et al.: Whole-genome cartography of estrogen receptor alpha binding sites. PLoS Genet 2007, 3(6):e87.
  • [30]Carroll JS, Meyer CA, Song J, Li W, Geistlinger TR, Eeckhoute J, Brodsky AS, Keeton EK, Fertuck KC, Hall GF, et al.: Genome-wide analysis of estrogen receptor binding sites. Nat Genet 2006, 38(11):1289-1297.
  • [31]Lin Z, Reierstad S, Huang CC, Bulun SE: Novel estrogen receptor-alpha binding sites and estradiol target genes identified by chromatin immunoprecipitation cloning in breast cancer. Cancer Res 2007, 67(10):5017-5024.
  • [32]Chow MS, Huang Y: Utilizing chinese medicine to improve cancer therapy - fiction or reality? Curr Drug Discov Technol 2010, 7(1):1.
  • [33]Jiang Q, Payton-Stewart F, Elliott S, Driver J, Rhodes LV, Zhang Q, Zheng S, Bhatnagar D, Boue SM, Collins-Burow BM, et al.: Effects of 7-O substitutions on estrogenic and anti-estrogenic activities of daidzein analogues in MCF-7 breast cancer cells. J Med Chem 2010, 53(16):6153-6163.
  • [34]Singh M, Parent S, Leblanc V, Asselin E: Resveratrol modulates the expression of PTGS2 and cellular proliferation in the normal rat endometrium in an AKT-dependent manner. Biol Reprod 2011, 84(5):1045-1052.
  • [35]Rae JM, Johnson MD, Scheys JO, Cordero KE, Larios JM, Lippman ME: GREB 1 is a critical regulator of hormone dependent breast cancer growth. Breast Cancer Res Treat 2005, 92(2):141-149.
  • [36]Hu C, Liu H, Du J, Mo B, Qi H, Wang X, Ye S, Li Z: Estrogenic activities of extracts of Chinese licorice (Glycyrrhiza uralensis) root in MCF-7 breast cancer cells. J Steroid Biochem Mol Biol 2009, 113(3–5):209-216.
  • [37]Magne Nde CB, Njamen D, Tanee Fomum S, Wandji J, Simpson E, Clyne C, Vollmer G: In vitro estrogenic activity of two major compounds from the stem bark of Erythrina lysistemon (Fabaceae). Eur J Pharmacol 2012, 674(2–3):87-94.
  • [38]Inoue A, Omoto Y, Yamaguchi Y, Kiyama R, Hayashi SI: Transcription factor EGR3 is involved in the estrogen-signaling pathway in breast cancer cells. J Mol Endocrinol 2004, 32(3):649-661.
  • [39]Beecken WD, Engl T, Ogbomo H, Relja B, Cinatl J, Bereiter-Hahn J, Oppermann E, Jonas D, Blaheta RA: Valproic acid modulates NCAM polysialylation and polysialyltransferase mRNA expression in human tumor cells. Int Immunopharmacol 2005, 5(4):757-769.
  • [40]Bachmeier BE, Mirisola V, Romeo F, Generoso L, Esposito A, Dell’eva R, Blengio F, Killian PH, Albini A, Pfeffer U: Reference profile correlation reveals estrogen-like trancriptional activity of Curcumin. Cell Physiol Biochem 2010, 26(3):471-482.
  • [41]Riggs BL, Hartmann LC: Selective estrogen-receptor modulators – mechanisms of action and application to clinical practice. N Engl J Med 2003, 348(7):618-629.
  • [42]Moiseeva EP, Manson MM: Dietary chemopreventive phytochemicals: too little or too much? Cancer Prev Res (Phila) 2009, 2(7):611-616.
  • [43]Chang CJ, Chiu JH, Tseng LM, Chang CH, Chien TM, Wu CW, Lui WY: Modulation of HER2 expression by ferulic acid on human breast cancer MCF7 cells. Eur J Clin Invest 2006, 36(8):588-596.
  • [44]Cuzick J, Powles T, Veronesi U, Forbes J, Edwards R, Ashley S, Boyle P: Overview of the main outcomes in breast-cancer prevention trials. Lancet 2003, 361(9354):296-300.
  • [45]Thomsen A, Kolesar JM: Chemoprevention of breast cancer. Am J Health Syst Pharm 2008, 65(23):2221-2228.
  • [46]Turner JV, Agatonovic-Kustrin S, Glass BD: Molecular aspects of phytoestrogen selective binding at estrogen receptors. J Pharm Sci 2007, 96(8):1879-1885.
  • [47]Nilsson S, Gustafsson JA: Estrogen receptors: therapies targeted to receptor subtypes. Clin Pharmacol Ther 2011, 89(1):44-55.
  • [48]Rygh CB, Qin S, Seo JW, Mahakian LM, Zhang H, Adamson R, Chen JQ, Borowsky AD, Cardiff RD, Reed RK, et al.: Longitudinal investigation of permeability and distribution of macromolecules in mouse malignant transformation using PET. Clin Cancer Res 2011, 17(3):550-559.
  • [49]Liu L, Ma H, Tang Y, Chen W, Lu Y, Guo J, Duan JA: Discovery of estrogen receptor alpha modulators from natural compounds in Si-Wu-Tang series decoctions using estrogen-responsive MCF-7 breast cancer cells. Bioorg Med Chem Lett 2012, 22(1):154-163.
  • [50]Saji S, Hirose M, Toi M: Clinical significance of estrogen receptor beta in breast cancer. Cancer Chemother Pharmacol 2005, 56(Suppl 1):21-26.
  文献评价指标  
  下载次数:194次 浏览次数:42次