期刊论文详细信息
BMC Cancer
The leukemia inhibitory factor (LIF) and p21 mediate the TGFβ tumor suppressive effects in human cutaneous melanoma
Laure Humbert2  Mostafa Ghozlan2  Lucie Canaff2  Jun Tian2  Jean-Jacques Lebrun1 
[1] Department of Medicine, Royal Victoria Hospital, Suite H7.66, 687 Pine Avenue West, Montreal, H3A 1A1, QC, Canada
[2] Division of Medical Oncology, Department of Medicine, McGill University Health Centre, Montreal, QC, Canada
关键词: Cell migration;    Melanoma;    STAT3;    LIF;    p21;    Apoptosis;    Cell cycle arrest;    Tumor suppression;    TGFβ/Smad signaling;   
Others  :  1161230
DOI  :  10.1186/s12885-015-1177-1
 received in 2014-12-12, accepted in 2015-03-06,  发布年份 2015
PDF
【 摘 要 】

Background

Cutaneous melanoma is the most lethal skin cancer and its incidence in developed countries has dramatically increased over the past decades. Localized tumors are easily treated by surgery, but advanced melanomas lack efficient treatment and are associated with very poor outcomes. Thus, understanding the processes underlying melanoma development and progression is critical. The Transforming Growth Factor beta (TGFβ) acts as a potent tumor suppressor in human melanoma, by inhibiting cell growth and preventing cellular migration and invasion.

Methods

In this study, we aimed at elucidating the molecular mechanisms underlying TGFβ-mediated tumor suppression. Human cutaneous melanoma cell lines, derived from different patients, were used to assess for cell cycle analysis, apoptosis/caspase activity and cell migration. Techniques involved immunoblotting, immunohistochemistry, real time PCR and luciferase reporter assays.

Results

We found the leukemia inhibitory factor (LIF) to be strongly up-regulated by TGFβ in melanoma cells, defining LIF as a novel TGFβ downstream target gene in cutaneous melanoma. Interestingly, we also showed that TGFβ-mediated LIF expression is required for TGFβ-induced cell cycle arrest and caspase-mediated apoptosis, as well as for TGFβ-mediated inhibition of cell migration. Moreover, we found that TGFβ-mediated LIF expression leads to activation of transcription of the cell cycle inhibitor p21 in a STAT3-dependent manner, and further showed that p21 is required for TGFβ/LIF-mediated cell cycle arrest and TGFβ-induced gene activation of several pro-apoptotic genes.

Conclusions

Together, our results define the LIF/p21 signaling cascade as a novel tumor suppressive-like pathway in melanoma, acting downstream of TGFβ to regulate cell cycle arrest and cell death, further highlight new potential therapeutic strategies for the treatment of cutaneous melanoma.

【 授权许可】

   
2015 Humbert et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150413014738419.pdf 2933KB PDF download
Figure 7. 29KB Image download
Figure 6. 161KB Image download
Figure 5. 75KB Image download
Figure 4. 75KB Image download
Figure 3. 78KB Image download
Figure 2. 47KB Image download
Figure 1. 36KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

【 参考文献 】
  • [1]Balch CM, Buzaid AC, Soong SJ, Atkins MB, Cascinelli N, Coit DG, et al.: Final version of the American Joint Committee on Cancer staging system for cutaneous melanoma. J Clin Oncol Official J American Soc Clin Oncol 2001, 19(16):3635-48.
  • [2]Houghton AN, Polsky D: Focus on melanoma. Cancer Cell 2002, 2(4):275-8.
  • [3]Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, et al.: Mutations of the BRAF gene in human cancer. Nature 2002, 417(6892):949-54.
  • [4]Lopez-Bergami P, Fitchman B, Ronai Z: Understanding signaling cascades in melanoma. Photochem Photobiol 2008, 84(2):289-306.
  • [5]Javelaud D, Alexaki VI, Mauviel A: Transforming growth factor-beta in cutaneous melanoma. Pigment Cell Melanoma Res 2008, 21(2):123-32.
  • [6]Humbert L, Neel JC, Lebrun JJ: Targeting TGF-beta signaling in human cancer therapy. Trends Cell Mol Biol 2010, 5:69-107.
  • [7]Chacko BM, Qin BY, Tiwari A, Shi G, Lam S, Hayward LJ, et al.: Structural basis of heteromeric smad protein assembly in TGF-beta signaling. Mol Cell 2004, 15(5):813-23.
  • [8]Lebrun JJ, Takabe K, Chen Y, Vale W: Roles of pathway-specific and inhibitory Smads in activin receptor signaling. Mol Endocrinol 1999, 13(1):15-23.
  • [9]Massague J: TGFbeta in cancer. Cell 2008, 134(2):215-30.
  • [10]Dai M, Al-Odaini A, Arakelian A, Rabbani SA, Ali S, Lebrun JJ: A novel function for p21Cip1 and the transcriptional regulator P/CAF as critical regulators of TGFß mediated breast cancer cell migration and invasion. Breast Cancer Res 2012, 14(5):R127. BioMed Central Full Text
  • [11]Lebrun JJ: The dual role of TGF in human cancer: from tumor suppression to cancer metastasis. ISRN Molecular Biol 2012, 2012:1-28.
  • [12]Humbert L, Lebrun JJ: TGF-beta inhibits human cutaneous melanoma cell migration and invasion through regulation of the plasminogen activator system. Cell Signal 2013, 25(2):490-500.
  • [13]Ramont L, Pasco S, Hornebeck W, Maquart FX, Monboisse JC: Transforming growth factor-beta1 inhibits tumor growth in a mouse melanoma model by down-regulating the plasminogen activation system. Exp Cell Res 2003, 291(1):1-10.
  • [14]Rodeck U, Bossler A, Graeven U, Fox FE, Nowell PC, Knabbe C, et al.: Transforming growth factor beta production and responsiveness in normal human melanocytes and melanoma cells. Cancer Res 1994, 54(2):575-81.
  • [15]Krasagakis K, Kruger-Krasagakes S, Fimmel S, Eberle J, Tholke D, von der Ohe M, et al.: Desensitization of melanoma cells to autocrine TGF-beta isoforms. J Cell Physiol 1999, 178(2):179-87.
  • [16]Perrot CY, Javelaud D, Mauviel A: Insights into the transforming growth factor-beta signaling pathway in cutaneous melanoma. Annals Dermatology 2013, 25(2):135-44.
  • [17]Rodeck U, Nishiyama T, Mauviel A: Independent regulation of growth and SMAD-mediated transcription by transforming growth factor beta in human melanoma cells. Cancer Res 1999, 59(3):547-50.
  • [18]Albino AP, Davis BM, Nanus DM: Induction of growth factor RNA expression in human malignant melanoma: markers of transformation. Cancer Res 1991, 51(18):4815-20.
  • [19]Krasagakis K, Garbe C, Schrier PI, Orfanos CE: Paracrine and autocrine regulation of human melanocyte and melanoma cell growth by transforming growth factor beta in vitro. Anticancer Res 1994, 14(6B):2565-71.
  • [20]Rodeck U, Melber K, Kath R, Menssen HD, Varello M, Atkinson B, et al.: Constitutive expression of multiple growth factor genes by melanoma cells but not normal melanocytes. J Invest Dermatol 1991, 97(1):20-6.
  • [21]Lasfar A, Cohen-Solal KA: Resistance to transforming growth factor beta-mediated tumor suppression in melanoma: are multiple mechanisms in place? Carcinogenesis 2010, 31(10):1710-7.
  • [22]Matsuoka I, Nakane A, Kurihara K: Induction of LIF-mRNA by TGF-beta 1 in Schwann cells. Brain Res 1997, 776(1–2):170-80.
  • [23]Penuelas S, Anido J, Prieto-Sanchez RM, Folch G, Barba I, Cuartas I, et al.: TGF-beta increases glioma-initiating cell self-renewal through the induction of LIF in human glioblastoma. Cancer Cell 2009, 15(4):315-27.
  • [24]Trouillas M, Saucourt C, Guillotin B, Gauthereau X, Taupin JL, Moreau JF, et al.: The LIF cytokine: towards adulthood. Eur Cytokine Netw 2009, 20(2):51-62.
  • [25]Mathieu ME, Saucourt C, Mournetas V, Gauthereau X, Theze N, Praloran V, et al.: LIF-dependent signaling: new pieces in the Lego. Stem Cell Rev 2012, 8(1):1-15.
  • [26]McKenzie RC, Szepietowski J: Cutaneous leukemia inhibitory factor and its potential role in the development of skin tumors. Dermatol Surg 2004, 30(2 Pt 2):279-90.
  • [27]Bellido T, O’Brien CA, Roberson PK, Manolagas SC: Transcriptional activation of the p21(WAF1, CIP1, SDI1) gene by interleukin-6 type cytokines. A prerequisite for their pro-differentiating and anti-apoptotic effects on human osteoblastic cells. J Biol Chem 1998, 273(33):21137-44.
  • [28]Halfter H, Friedrich M, Resch A, Kullmann M, Stogbauer F, Ringelstein EB, et al.: Oncostatin M induces growth arrest by inhibition of Skp2, Cks1, and cyclin A expression and induced p21 expression. Cancer Res 2006, 66(13):6530-9.
  • [29]De la Cueva E, Garcia-Cao I, Herranz M, Lopez P, Garcia-Palencia P, Flores JM, et al.: Tumorigenic activity of p21Waf1/Cip1 in thymic lymphoma. Oncogene 2006, 25(29):4128-32.
  • [30]Heo JI, Oh SJ, Kho YJ, Kim JH, Kang HJ, Park SH, et al.: ERK mediates anti-apoptotic effect through phosphorylation and cytoplasmic localization of p21Waf1/Cip1/Sdi in response to DNA damage in normal human embryonic fibroblast (HEF) cells. Mol Biol Rep 2011, 38(4):2785-91.
  • [31]Suzuki A, Tsutomi Y, Akahane K, Araki T, Miura M: Resistance to Fas-mediated apoptosis: activation of caspase 3 is regulated by cell cycle regulator p21WAF1 and IAP gene family ILP. Oncogene 1998, 17(8):931-9.
  • [32]Lincet H, Poulain L, Remy JS, Deslandes E, Duigou F, Gauduchon P, et al.: The p21(cip1/waf1) cyclin-dependent kinase inhibitor enhances the cytotoxic effect of cisplatin in human ovarian carcinoma cells. Cancer Lett 2000, 161(1):17-26.
  • [33]Qiao L, McKinstry R, Gupta S, Gilfor D, Windle JJ, Hylemon PB, et al.: Cyclin kinase inhibitor p21 potentiates bile acid-induced apoptosis in hepatocytes that is dependent on p53. Hepatology 2002, 36(1):39-48.
  • [34]Kang KH, Kim WH, Choi KH: p21 promotes ceramide-induced apoptosis and antagonizes the antideath effect of Bcl-2 in human hepatocarcinoma cells. Exp Cell Res 1999, 253(2):403-12.
  • [35]Hingorani R, Bi B, Dao T, Bae Y, Matsuzawa A, Crispe IN: CD95/Fas signaling in T lymphocytes induces the cell cycle control protein p21cip-1/WAF-1, which promotes apoptosis. J Immunol 2000, 164(8):4032-6.
  • [36]Reynisdottir I, Polyak K, Iavarone A, Massague J: Kip/Cip and Ink4 Cdk inhibitors cooperate to induce cell cycle arrest in response to TGF-beta. Genes Dev 1995, 9(15):1831-45.
  • [37]Datto MB, Li Y, Panus JF, Howe DJ, Xiong Y, Wang XF: Transforming growth factor beta induces the cyclin-dependent kinase inhibitor p21 through a p53-independent mechanism. Proc Natl Acad Sci U S A 1995, 92(12):5545-9.
  • [38]Hannon GJ, Beach D: p15INK4B is a potential effector of TGF-beta-induced cell cycle arrest. Nature 1994, 371(6494):257-61.
  • [39]Coffey RJ Jr, Bascom CC, Sipes NJ, Graves-Deal R, Weissman BE, Moses HL: Selective inhibition of growth-related gene expression in murine keratinocytes by transforming growth factor beta. Mol Cell Biol 1988, 8(8):3088-93.
  • [40]Korah J, Falah N, Lacerte A, Lebrun JJ: A transcriptionally active pRb-E2F1-P/CAF signaling pathway is central to TGFbeta-mediated apoptosis. Cell Death Dis 2012, 3:e407.
  • [41]Datto MB, Yu Y, Wang XF: Functional analysis of the transforming growth factor beta responsive elements in the WAF1/Cip1/p21 promoter. J Biol Chem 1995, 270(48):28623-8.
  • [42]Chen D, Sun Y, Wei Y, Zhang P, Rezaeian AH, Teruya-Feldstein J, et al.: LIFR is a breast cancer metastasis suppressor upstream of the Hippo-YAP pathway and a prognostic marker. Nat Med 2012, 18(10):1511-7.
  • [43]Abbas T, Dutta A: p21 in cancer: intricate networks and multiple activities. Nat Rev Cancer 2009, 9(6):400-14.
  • [44]Romanov VS, Pospelov VA, Pospelova TV: Cyclin-dependent kinase inhibitor p21(Waf1): contemporary view on its role in senescence and oncogenesis. Biochemistry (Mosc) 2012, 77(6):575-84.
  • [45]Cazzalini O, Scovassi AI, Savio M, Stivala LA, Prosperi E: Multiple roles of the cell cycle inhibitor p21(CDKN1A) in the DNA damage response. Mutat Res 2010, 704(1–3):12-20.
  • [46]Gartel AL: p21(WAF1/CIP1) and cancer: a shifting paradigm? Biofactors 2009, 35(2):161-4.
  • [47]Besson A, Dowdy SF, Roberts JM: CDK inhibitors: cell cycle regulators and beyond. Dev Cell 2008, 14(2):159-69.
  • [48]Huang S, Shu L, Dilling MB, Easton J, Harwood FC, Ichijo H, et al.: Sustained activation of the JNK cascade and rapamycin-induced apoptosis are suppressed by p53/p21(Cip1). Mol Cell 2003, 11(6):1491-501.
  • [49]Shim J, Lee H, Park J, Kim H, Choi EJ: A non-enzymatic p21 protein inhibitor of stress-activated protein kinases. Nature 1996, 381(6585):804-6.
  • [50]Fotedar R, Brickner H, Saadatmandi N, Rousselle T, Diederich L, Munshi A, et al.: Effect of p21waf1/cip1 transgene on radiation induced apoptosis in T cells. Oncogene 1999, 18(24):3652-8.
  • [51]Smith AG, Nichols J, Robertson M, Rathjen PD: Differentiation inhibiting activity (DIA/LIF) and mouse development. Dev Biol 1992, 151(2):339-51.
  • [52]Taupin JL, Pitard V, Dechanet J, Miossec V, Gualde N, Moreau JF: Leukemia inhibitory factor: part of a large ingathering family. Int Rev Immunol 1998, 16(3–4):397-426.
  • [53]Ichikawa Y: Differentiation of a cell line of myeloid leukemia. J Cell Physiol 1969, 74(3):223-34.
  • [54]Aubert J, Dessolin S, Belmonte N, Li M, McKenzie FR, Staccini L, et al.: Leukemia inhibitory factor and its receptor promote adipocyte differentiation via the mitogen-activated protein kinase cascade. J Biol Chem 1999, 274(35):24965-72.
  • [55]Rajasingh J, Bord E, Hamada H, Lambers E, Qin G, Losordo DW, et al.: STAT3-dependent mouse embryonic stem cell differentiation into cardiomyocytes: analysis of molecular signaling and therapeutic efficacy of cardiomyocyte precommitted mES transplantation in a mouse model of myocardial infarction. Circ Res 2007, 101(9):910-8.
  • [56]Mohri T, Fujio Y, Maeda M, Ito T, Iwakura T, Oshima Y, et al.: Leukemia inhibitory factor induces endothelial differentiation in cardiac stem cells. J Biol Chem 2006, 281(10):6442-7.
  • [57]Hirobe T: Role of leukemia inhibitory factor in the regulation of the proliferation and differentiation of neonatal mouse epidermal melanocytes in culture. J Cell Physiol 2002, 192(3):315-26.
  • [58]Paglia D, Oran A, Lu C, Kerbel RS, Sauder DN, McKenzie RC: Expression of leukemia inhibitory factor and interleukin-11 by human melanoma cell lines: LIF, IL-6, and IL-11 are not coregulated. J Interferon Cytokine Res 1995, 15(5):455-60.
  • [59]Arthan D, Hong SK, Park JI: Leukemia inhibitory factor can mediate Ras/Raf/MEK/ERK-induced growth inhibitory signaling in medullary thyroid cancer cells. Cancer Lett 2010, 297(1):31-41.
  • [60]McColm JR, Geisen P, Peterson LJ, Hartnett ME: Exogenous leukemia inhibitory factor (LIF) attenuates retinal vascularization reducing cell proliferation not apoptosis. Exp Eye Res 2006, 83(2):438-46.
  • [61]Schere-Levy C, Buggiano V, Quaglino A, Gattelli A, Cirio MC, Piazzon I, et al.: Leukemia inhibitory factor induces apoptosis of the mammary epithelial cells and participates in mouse mammary gland involution. Exp Cell Res 2003, 282(1):35-47.
  • [62]Moon C, Liu BQ, Kim SY, Kim EJ, Park YJ, Yoo JY, et al.: Leukemia inhibitory factor promotes olfactory sensory neuronal survival via phosphoinositide 3-kinase pathway activation and Bcl-2. J Neurosci Res 2009, 87(5):1098-106.
  • [63]Hunt LC, Tudor EM, White JD: Leukemia inhibitory factor-dependent increase in myoblast cell number is associated with phosphotidylinositol 3-kinase-mediated inhibition of apoptosis and not mitosis. Exp Cell Res 2010, 316(6):1002-9.
  • [64]Hunt LC, Upadhyay A, Jazayeri JA, Tudor EM, White JD: Caspase-3, myogenic transcription factors and cell cycle inhibitors are regulated by leukemia inhibitory factor to mediate inhibition of myogenic differentiation. Skelet Muscle 2011, 1(1):17. BioMed Central Full Text
  • [65]Gao SP, Mark KG, Leslie K, Pao W, Motoi N, Gerald WL, et al.: Mutations in the EGFR kinase domain mediate STAT3 activation via IL-6 production in human lung adenocarcinomas. J Clin Invest 2007, 117(12):3846-56.
  • [66]Dolled-Filhart M, Camp RL, Kowalski DP, Smith BL, Rimm DL: Tissue microarray analysis of signal transducers and activators of transcription 3 (Stat3) and phospho-Stat3 (Tyr705) in node-negative breast cancer shows nuclear localization is associated with a better prognosis. Clin Cancer Res 2003, 9(2):594-600.
  • [67]Pectasides E, Egloff AM, Sasaki C, Kountourakis P, Burtness B, Fountzilas G, et al.: Nuclear localization of signal transducer and activator of transcription 3 in head and neck squamous cell carcinoma is associated with a better prognosis. Clin Cancer Res 2010, 16(8):2427-34.
  • [68]Couto JP, Daly L, Almeida A, Knauf JA, Fagin JA, Sobrinho-Simoes M, et al.: STAT3 negatively regulates thyroid tumorigenesis. Proc Natl Acad Sci U S A 2012, 109(35):E2361-70.
  • [69]Kim WG, Choi HJ, Kim WB, Kim EY, Yim JH, Kim TY, et al.: Basal STAT3 activities are negatively correlated with tumor size in papillary thyroid carcinomas. J Endocrinol Invest 2012, 35(4):413-8.
  • [70]Tas F, Yasasever CT, Karabulut S, Tastekin D, Duranyildiz D. Serum transforming growth factor-beta1 levels may have predictive and prognostic roles in patients with gastric cancer. Tumour Biol. 2014. [Epub ahead of print].
  文献评价指标  
  下载次数:64次 浏览次数:24次