BMC Cell Biology | |
In vivo imaging of Nematostella vectensis embryogenesis and late development using fluorescent probes | |
Marten Postma1  Mark Q Martindale2  Eric Röttinger3  Miguel Salinas-Saavedra2  Leslie S Babonis2  Ada A Dattoli1  Timothy Q DuBuc2  | |
[1] Molecular Cytology and Van Leeuwenhoek Centre of Advanced Microscopy, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, NL-1098 XH, The Netherlands;Kewalo Marine Laboratory, University of Hawaii, 41 Ahui St., Honolulu 96813, HI, USA;INSERM, IRCAN, U1081, Nice, 06107, France | |
关键词: Mitosis; Nuclear envelope; Microvilli; Cytoskeleton; EB1; mTurquoise2; Lifeact; Nematostella vectensis; | |
Others : 1230194 DOI : 10.1186/s12860-014-0044-2 |
|
received in 2014-06-12, accepted in 2014-11-19, 发布年份 2014 |
【 摘 要 】
Background
Cnidarians are the closest living relatives to bilaterians and have been instrumental to studying the evolution of bilaterian properties. The cnidarian model, Nematostella vectensis, is a unique system in which embryology and regeneration are both studied, making it an ideal candidate to develop in vivo imaging techniques. Live imaging is the most direct way for quantitative and qualitative assessment of biological phenomena. Actin and tubulin are cytoskeletal proteins universally important for regulating many embryological processes but so far studies in Nematostella primarily focused on the localization of these proteins in fixed embryos.
Results
We used fluorescent probes expressed in vivo to investigate the dynamics of Nematostella development. Lifeact-mTurquoise2, a fluorescent cyan F-actin probe, can be visualized within microvilli along the cellular surface throughout embryonic development and is stable for two months after injection. Co-expression of Lifeact-mTurquoise2 with End-Binding protein1 (EB1) fused to mVenus or tdTomato-NLS allows for the visualization of cell-cycle properties in real time. Utilizing fluorescent probes in vivo helped to identify a concentrated ‘flash’ of Lifeact-mTurquoise2 around the nucleus, immediately prior to cytokinesis in developing embryos. Moreover, Lifeact-mTurquoise2 expression in adult animals allowed the identification of various cell types as well as cellular boundaries.
Conclusion
The methods developed in this manuscript provide an alternative protocol to investigate Nematostella development through in vivo cellular analysis. This study is the first to utilize the highly photo-stable florescent protein mTurquoise2 as a marker for live imaging. Finally, we present a clear methodology for the visualization of minute temporal events during cnidarian development.
【 授权许可】
2014 DuBuc et al.; licensee BioMed Central Ltd.
Files | Size | Format | View |
---|---|---|---|
Figure 6. | 131KB | Image | download |
Figure 5. | 75KB | Image | download |
Figure 4. | 102KB | Image | download |
Figure 3. | 136KB | Image | download |
Figure 2. | 227KB | Image | download |
Figure 1. | 61KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
【 参考文献 】
- [1]Shimomura O, Johnson FH, Saiga Y: Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. J Cell Comp Physiol 1962, 59:223-39.
- [2]Wikramanayake AH, Hong M, Lee PN, Pang K, Byrum CA, Bince JM, Martindale MQ: An ancient role for nuclear beta-catenin in the evolution of axial polarity and germ layer segregation. Nature 2003, 426:446-450.
- [3]Saina M, Genikhovich G, Renfer E, Technau U: BMPs and chordin regulate patterning of the directive axis in a sea anemone. PNAS 2009, 106:18592-18597.
- [4]Martindale MQ, Pang K, Finnerty JR: Investigating the origins of triploblasty: “mesodermal” gene expression in a diploblastic animal, the sea anemone Nematostella vectensis (phylum, Cnidaria; class, Anthozoa). Development 2004, 131(10):2463-2474.
- [5]Renfer E, Amon-hassenzahl A, Steinmetz PRH, Technau U: A muscle-specific transgenic reporter line of the sea anemone, Nematostella vectensis. PNAS 2009, 107:104-108.
- [6]Layden MJ, Röttinger E, Wolenski FS, Gilmore TD, Martindale MQ: Microinjection of mRNA or morpholinos for reverse genetic analysis in the starlet sea anemone, Nematostella vectensis. Nat Protoc 2013, 8(5):924-934.
- [7]Marlow H, Roettinger E, Boekhout M, Martindale MQ: Functional roles of Notch signaling in the cnidarian Nematostella vectensis. Dev Biol 2012, 362(2):295-308.
- [8]Friedrich CL, Moyles D, Beveridge TJ, Hancock RE: Antibacterial action of structurally diverse cationic peptides on gram-positive bacteria. Antimicrob Agents Chemother 2000, 44(8):2086-2092.
- [9]Moelans CB, ter Hoeve N, van Ginkel J-W, ten Kate FJ, van Diest PJ: Formaldehyde substitute fixatives. Analysis of macroscopy, morphologic analysis, and immunohistochemical analysis. Am J Clin Pathol 2011, 136(4):548-556.
- [10]Hejnol A, Obst M, Stamatakis A, Ott M, Rouse GW, Edgecombe GD, Martinez P, Baguñà J, Bailly X, Jondelius U, Wiens M, Müller WEG, Seaver E, Wheeler WC, Martindale MQ, Giribet G, Dunn CW: Assessing the root of bilaterian animals with scalable phylogenomic methods. Proc R Soc B 2009, 276:4261-4270.
- [11]Szymanski DB, Cosgrove DJ: Dynamic coordination of cytoskeletal and cell wall systems during plant cell morphogenesis. Current Biology 2009, 19(17):R800-R811.
- [12]Lancaster OM, Le Berre M, Dimitracopoulos A, Bonazzi D, Zlotek-Zlotkiewicz E, Picone R, Duke T, Piel M, Baum B: Mitotic rounding alters cell geometry to ensure efficient bipolar spindle formation. Dev Cell 2013, 25(3):270-283.
- [13]Güttinger S, Laurell E, Kutay U: Orchestrating nuclear envelope disassembly and reassembly during mitosis. Nat Rev Mol Cell Biol 2009, 10(3):178-191.
- [14]Li J, Shariff A, Wiking M, Lundberg E, Rohde GK, Murphy RF: Estimating microtubule distributions from 2D immunofluorescence microscopy images reveals differences among human cultured cell lines. PLoS ONE 2012, 7(11):e50292.
- [15]Müller M, Diensthuber RP, Chizhov I, Claus P, Heissler SM, Preller M, Taft MH, Manstein DJ: Distinct functional interactions between actin isoforms and nonsarcomeric myosins. PLoS ONE 2013, 8(7):e70636.
- [16]Vale RD: The molecular motor toolbox for intracellular transport. Cell 2003, 112:467-480.
- [17]Berrueta L, Kraeft SK, Tirnauer JS, Schuyler SC, Chen LB, Hill DE, Pellman D, Bierer BE: The adenomatous polyposis coli-binding protein EB1 is associated with cytoplasmic and spindle microtubules. Proc Natl Acad Sci U S A 1998, 95(18):10596-10601.
- [18]Riedl J, Crevenna AH, Kessenbrock K, Yu JH, Neukirchen D, Bradke F, Jenne D, Holak TA, Werb Z, Sixt M, Wedlich-soldner R: Lifeact: a versatile marker to visualize F-actin. Nat Methods 2008, 5(7):605-607.
- [19]Su L, Burrell M, Hill DE, Gyuris J, Brent R, Wiltshire R, Trent J, Vogelstein B, Kinzler KW: APC binds to the novel protein EB1. Cancer Res 1995, 55(14):2972-2977.
- [20]Chen Q, Pollard TD: Actin filament severing by cofilin is more important for assembly than constriction of the cytokinetic contractile ring. J Cell Biol 2011, 195(3):485-498.
- [21]Deibler M, Spatz JP, Kemkemer R: Actin fusion proteins alter the dynamics of mechanically induced cytoskeleton rearrangement. PLoS ONE 2011, 6(8):e22941.
- [22]Anderson EK, Martin DS: A fluorescent GTP analog as a specific, high-precision label of microtubules. BioTechniques 2011, 51(1):43-48.
- [23]Era A, Tominaga M, Ebine K, Awai C, Saito C, Ishizaki K, Yamato KT, Kohchi T, Ueda T: Application of Lifeact reveals F-actin dynamics in Arabidopsis thaliana and the liverwort, Marchantia polymorpha. Plant Cell Physiol 2009, 50(6):1041-1048.
- [24]Blake-hodek KA, Cassimeris L, Huffaker TC: Regulation of microtubule dynamics by Bim1 and Bik1, the budding yeast members of the EB1 and CLIP-170 families of plus-end tracking proteins. Mol Biol Cell 2010, 21:2013-2023.
- [25]Eisinger WR, Kirik V, Lewis C, Ehrhardt DW, Briggs WR: Quantitative changes in microtubule distribution correlate with guard cell function in Arabidopsis. Mol Plant 2012, 5(3):716-725.
- [26]Jang Y, Soekmadji C, Mitchell JM, Thomas WG, Thorn P: Real-time measurement of F-actin remodeling during exocytosis using Lifeact-EGFP transgenic animals. PLoS ONE 2012, 7(7):e39815.
- [27]Schachtner H, Li A, Stevenson D, Calaminus SDJ, Thomas SG, Watson SP, Sixt M, Wedisch-Soldner R, Machesky LM: Tissue inducible Lifeact expression allows visualization of actin dynamics in vivo and ex vivo. Eur J Cell Biol 2012, 91(11–12):923-929.
- [28]Munsie LN, Caron N, Desmond C, Truent R: Lifeact cannot visualize some forms of stress-induced twisted f-actin. Correspondance Nat Meth 2009, 6(5):317.
- [29]Vitre B, Coquelle FM, Heichette C, Garnier C, Chrétien D, Arnal I: EB1 regulates microtubule dynamics and tubulin sheet closure in vitro. Nat Cell Biol 2008, 10(4):415-421.
- [30]Applegate KT, Besson S, Matov A, Bagonis MH, Jaqaman K, Danuser G: plusTipTracker: quantitative image analysis software for the measurement of microtubule dynamics. J Struct Biol 2011, 176(2):168-184.
- [31]Stepanova T, Slemmer J, Hoogenraad CC, Lansbergen G, Dortland B, De Zeeuw CI, Galjart N: Visualization of microtubule growth in cultured neurons via the use of EB3-GFP (end-binding protein 3-green fluorescent protein). J Neurosci 2003, 23(7):2655-2664.
- [32]Roure A, Rothbächer U, Robin F, Kalmar E, Ferone G, Lamy C, Missero C, Mueller F, Lemaire P: A multicassette gateway vector set for high throughput and comparative analyses in ciona and vertebrate embryos. PLoS ONE 2007, 2(9):e916.
- [33]Sebé-Pedrós A, Burkhardt P, Sánchez-Pons N, Fairclough SR, Lang BF, King N, Ruiz-Trillo I: Insights into the origin of metazoan filopodia and microvilli. Mol Biol Evol 2013, 30(9):2013-2023.
- [34]Whalen K, Reitzel AM, Hamdoun A: Actin polymerization controls the activation of multidrug efflux at fertilization by translocation and fine-scale positioning of ABCB1 on microvilli. Mol Biol Cell 2012, 23(18):3663-3672.
- [35]Fritzenwanker JH, Genikhovich G, Kraus Y, Technau U: Early development and axis specification in the sea anemone Nematostella vectensis. Dev Biol 2007, 310(2):264-279.
- [36]Galliot B, Quiquand M: A two-step process in the emergence of neurogenesis. Eur J Neurosci 2011, 34(6):847-862.
- [37]Goedhart J, von Stetten D, Noirclerc-Savoye M, Lelimousin M, Joosen L, Hink M, van Weren L, Gadella TWJ, Royant A: Structure-guided evolution of cyan fluorescent proteins towards a quantum yield of 93%. Nat Commun 2012, 3:751.
- [38]Burkel BM, von Dassow G, Bement WM: Versatile fluorescent probes for actin filaments based on the actin-binding domain of utrophin. Cell Motil Cytoskeleton 2007, 64(11):822-832.
- [39]Jacobsohn S: Characterization of novel F-actin envelopes surrounding nuclei during cleavage of a polychaete worm. Int J Dev Biol 1999, 43(1):19-26.
- [40]Martel E, Nay DD, Brown S, Sarr A: Genome size variation and basic chromosome number in pearl millet and fourteen related pennisetum species. J Hered 1934, 88:139-143.
- [41]Pandit MK, White SM, Pocock MJO: The contrasting effects of genome size, chromosome number and ploidy level on plant invasiveness: a global analysis. New Phytol 2014, 203(2):697-703.
- [42]Bennett MD: Comparisons with Caenorhabditis (100 Mb) and drosophila (175 Mb) using flow cytometry show genome size in Arabidopsis to be 157 Mb and thus 25% larger than the Arabidopsis genome initiative estimate of 125 Mb. Ann Bot 2003, 91(5):547-557.
- [43]Putnam NH, Srivastava M, Hellsten U, Dirks B, Chapman J, Salamov A, Shapiro A, Terry A, Lindquist E, Kapitonov VV, Jurka J, Genikhovich G, Grigoriev IV, Lucas S, Steele RE, Finnerty JR, Technau U, Martindale MQ, Rokhsar DS: Sea anemone genome reveals ancestral eumetazoan gene repertoire and genomic organization. Science 2007, 317(5834):86-94.
- [44]Tamulonis C, Postma M, Marlow HQ, Magie CR, de Jong J, Kaandorp J: A cell-based model of Nematostella vectensis gastrulation including bottle cell formation, invagination and zippering. Dev Biol 2011, 351(1):217-228.