BMC Neuroscience | |
Cell type-specific expression of Eps8 in the mouse hippocampus | |
Kuei-Sen Hsu1  Cheng-Che Lee1  Yun-Shen Lin1  Chiung-Chun Huang1  | |
[1] Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan | |
关键词: Hippocampus; Interneuron; Cholecystokinin; Calbindin; Eps8; | |
Others : 1092430 DOI : 10.1186/1471-2202-15-26 |
|
received in 2014-02-12, accepted in 2014-02-13, 发布年份 2014 | |
【 摘 要 】
Background
Epidermal growth factor receptor substrate 8 (Eps8) is a multifunctional protein that regulates actin cytoskeleton dynamics and architecture through its barbed-end capping and bundling activities. In cultured hippocampal neurons, Eps8 is enriched at dendritic spine heads and is required for spine morphogenesis; however, the detailed expression pattern of Eps8 in the hippocampus has not yet been explored.
Results
Here, we demonstrate that endogenous Eps8 protein is restrictively expressed in neurons (NeuN-positive), but not in glial cells (glial fibrillary acidic protein-positive) in area CA1 of the mouse hippocampus. Surprisingly, Eps8 immunoreactivity is rarely found in pyramidal cell somata, but is expressed predominantly in the somata and dendrites of 67 kDa isoform of glutamic acid decarboxylase-expressing GABAergic interneurons in the stratum radiatum and at the border of stratum radiatum and lacunosum-moleculare of area CA1. On the basis of co-localizing markers, we found that Eps8 is not present in perisomatic inhibitory parvalbumin-expressing cells or calretinin-expressing interneurons. However, Eps8 is richly expressed in calbindin-expressing interneurons. Furthermore, Eps8 is also present in cholecystokinin-expressing interneurons, but not in somatostatin-expressing interneurons in area CA1 stratum pyramidale and stratum radiatum.
Conclusions
These results reveal a previously unknown cell type-specific expression pattern of endogenous Eps8 protein in the mouse hippocampus and speculate that the role of Eps8 in controlling and orchestrating neuronal morphogenesis and structural plasticity might be more prominent in interneurons than in pyramidal cells of the hippocampus.
【 授权许可】
2014 Huang et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150128184027458.pdf | 3464KB | download | |
Figure 5. | 90KB | Image | download |
Figure 4. | 86KB | Image | download |
Figure 3. | 105KB | Image | download |
Figure 2. | 133KB | Image | download |
Figure 1. | 63KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
【 参考文献 】
- [1]Fazioli F, Minichiello L, Matoska V, Castagnino P, Miki T, Wong WT, Di Fiore PP: Eps8, a substrate for the epidermal growth factor receptor kinase, enhances EGF-dependent mitogenic signals. EMBO J 1993, 12(10):3799-3808.
- [2]Di Fiore PP, Scita G: Eps8 in the midst of GTPases. Int J Biochem Cell Biol 2002, 34(10):1178-1183.
- [3]Lanzetti L, Rybin V, Malabarba MG, Christoforidis S, Scita G, Zerial M, Di Fiore PP: The Eps8 protein coordinates EGF receptor signalling through Rac and trafficking through Rab5. Nature 2000, 408(6810):374-377.
- [4]Auciello G, Cunningham DL, Tatar T, Heath JK, Rappoport JZ: Regulation of fibroblast growth factor receptor signalling and trafficking by Src and Eps8. J Cell Sci 2013, 126(2):613-624.
- [5]Disanza A, Carlier MF, Stradal TE, Didry D, Frittoli E, Confalonieri S, Croce A, Wehland J, Di Fiore PP, Scita G: Eps8 controls actin-based motility by capping the barbed ends of actin filaments. Nat Cell Biol 2004, 6(12):1180-1188.
- [6]Funato Y, Terabayashi T, Suenaga N, Seiki M, Takenawa T, Miki H: IRSp53/Eps8 complex is important for positive regulation of Rac and cancer cell motility/invasiveness. Cancer Res 2004, 64(15):5237-5244.
- [7]Sekerková G, Diño MR, Ilijic E, Russo M, Zheng L, Bartles JR, Mugnaini E: Postsynaptic enrichment of Eps8 at dendritic shaft synapses of unipolar brush cells in rat cerebellum. Neuroscience 2007, 145(1):116-129.
- [8]Offenhäuser N, Castelletti D, Mapelli L, Soppo BE, Regondi MC, Rossi P, D'Angelo E, Frassoni C, Amadeo A, Tocchetti A, Pozzi B, Disanza A, Guarnieri D, Betsholtz C, Scita G, Heberlein U, Di Fiore PP: Increased ethanol resistance and consumption in Eps8 knockout mice correlates with altered actin dynamics. Cell 2006, 127(1):213-226.
- [9]Stamatakou E, Marzo A, Gibb A, Salinas PC: Activity-dependent spine morphogenesis: a role for the actin-capping protein Eps8. J Neurosci 2013, 33(6):2661-2670.
- [10]Menna E, Zambetti S, Morini R, Donzelli A, Disanza A, Calvigioni D, Braida D, Nicolini C, Orlando M, Fossati G, Cristina Regondi M, Pattini L, Frassoni C, Francolini M, Scita G, Sala M, Fahnestock M, Matteoli M: Eps8 controls dendritic spine density and synaptic plasticity through its actin-capping activity. EMBO J 2013, 32(12):1730-1744.
- [11]Menna E, Disanza A, Cagnoli C, Schenk U, Gelsomino G, Frittoli E, Hertzog M, Offenhauser N, Sawallisch C, Kreienkamp HJ, Gertler FB, Di Fiore PP, Scita G, Matteoli M: Eps8 regulates axonal filopodia in hippocampal neurons in response to brain-derived neurotrophic factor (BDNF). PLoS Biol 2009, 7:e1000138.
- [12]Tamamaki N, Yanagawa Y, Tomioka R, Miyazaki J, Obata K, Kaneko T: Green fluorescent protein expression and colocalization with calretinin, parvalbumin, and somatostatin in the GAD67-GFP knock-in mouse. J Comp Neurol 2003, 467(1):60-79.
- [13]Celio MR: Calbindin D-28 K and parvalbumin in the rat nervous system. Neuroscience 1990, 35(2):375-475.
- [14]Gulyás AI, Miettinen R, Jacobowitz DM, Freund TF: Calretinin is present in non-pyramidal cells of the rat hippocampus-I. A new type of neuron specifically associated with the mossy fibre system. Neuroscience 1992, 48(1):1-27.
- [15]Freund TF, Buzsáki G: Interneurons of the hippocampus. Hippocampus 1996, 6(4):347-470.
- [16]DeFelipe J: Types of neurons, synaptic connections and chemical characteristics of cells immunoreactive for calbindin-D28K, parvalbumin and calretinin in the neocortex. J Chem Neuroanat 1997, 14(1):1-19.
- [17]Somogyi P, Tamás G, Lujan R, Buhl EH: Salient features of synaptic organisation in the cerebral cortex. Brain Res Brain Res Rev 1998, 26(2–3):113-135.
- [18]Bartolini G, Ciceri G, Marin O: Integration of GABAergic interneurons into cortical cell assemblies: lessons from embryos and adults. Neuron 2013, 79(5):849-864.
- [19]Somogyi P, Klausberger T: Defined types of cortical interneurone structure space and spike timing in the hippocampus. J Physiol 2005, 562(1):9-26.
- [20]Klausberger T, Somogyi P: Neuronal diversity and temporal dynamics: the unity of hippocampal circuit operations. Science 2008, 321(5885):53-57.
- [21]Vida I, Halasy K, Szinyei C, Somogyi P, Buhl EH: Unitary IPSPs evoked by interneurons at the stratum radiatum-stratum lacunosum-moleculare border in the CA1 area of the rat hippocampus in vitro. J Physiol 1998, 506(3):755-773.
- [22]Ali AB: Presynaptic Inhibition of GABAA receptor-mediated unitary IPSPs by cannabinoid receptors at synapses between CCK-positive interneurons in rat hippocampus. J Neurophysiol 2007, 98(2):861-869.
- [23]West MJ, Slomianka L, Gundersen HJ: Unbiased stereological estimation of the total number of neurons in thesubdivisions of the rat hippocampus using the optical fractionator. Anat Rec 1991, 231(4):482-497.
- [24]West MJ: Stereological methods for estimating the total number of neurons and synapses: issues of precision and bias. Trends Neurosci 1999, 22(2):51-61.
- [25]Franklin KBJ, Paxinos G: The mouse brain in stereotaxic coordinates. Amsterdam: Elsevier Academic; 2008.
- [26]Yeh CM, Huang CC, Hsu KS: Prenatal stress alters hippocampal synaptic plasticity in young rat offspring through preventing the proteolytic conversion of pro-brain-derived neurotrophic factor (BDNF) to mature BDNF. J Physiol 2012, 590(4):991-1010.