期刊论文详细信息
BMC Developmental Biology
Development of the follicular basement membrane during human gametogenesis and early folliculogenesis
Susana M Chuva de Sousa Lopes2  Lucette A J van der Westerlaken5  Frans M Helmerhorst5  Carina G Hilders3  Leonie A Louwe5  Maria M Gomes Fernandes1  Matthias S Roost1  Ana de Melo Bernardo1  Daniëlle B Klootwijk1  Liesbeth van Iperen1  A Marijne Heeren4 
[1] Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, Leiden, 2333, ZC, The Netherlands;Department for Reproductive Medicine, Ghent University Hospital, De Pintelaan 185, Ghent, 9000, Belgium;Department of Gynaecology, Reinier de Graaf Hospital, Reinier de Graaf 3-11, Delft, 2625, AD, The Netherlands;Current address: Department of Obstetrics and Gynaecology, VU University Medical Center, De Boelelaan 1118, Amsterdam, 1081, HZ, The Netherlands;Department of Gynaecology, Leiden University Medical Center, Albinusdreef 2, Leiden, 2300, RC, The Netherlands
关键词: Gonads;    Extracellular matrix;    Follicles;    Adult ovary;    Germ cells;    Human;   
Others  :  1089670
DOI  :  10.1186/s12861-015-0054-0
 received in 2014-07-07, accepted in 2015-01-13,  发布年份 2015
PDF
【 摘 要 】

Background

In society, there is a clear need to improve the success rate of techniques to restore fertility. Therefore a deeper knowledge of the dynamics of the complex molecular environment that regulates human gametogenesis and (early) folliculogenesis in vivo is necessary. Here, we have studied these processes focusing on the formation of the follicular basement membrane (BM) in vivo.

Results

The distribution of the main components of the extracellular matrix (ECM) collagen IV, laminin and fibronectin by week 10 of gestation (W10) in the ovarian cortex revealed the existence of ovarian cords and of a distinct mesenchymal compartment, resembling the organization in the male gonads. By W17, the first primordial follicles were assembled individually in that (cortical) mesenchymal compartment and were already encapsulated by a BM of collagen IV and laminin, but not fibronectin. In adults, in the primary and secondary follicles, collagen IV, laminin and to a lesser extent fibronectin were prominent in the follicular BM.

Conclusions

The ECM-molecular niche compartimentalizes the female gonads from the time of germ cell colonization until adulthood. This knowledge may contribute to improve methods to recreate the environment needed for successful folliculogenesis in vitro and that would benefit a large number of infertility patients.

【 授权许可】

   
2015 Heeren et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150127010313900.pdf 4259KB PDF download
Figure 8. 72KB Image download
Figure 7. 270KB Image download
Figure 6. 254KB Image download
Figure 2. 120KB Image download
Figure 4. 304KB Image download
Figure 3. 335KB Image download
Figure 2. 328KB Image download
Figure 1. 165KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 2.

Figure 6.

Figure 7.

Figure 8.

【 参考文献 】
  • [1]Byskov AG: Differentiation of mammalian embryonic gonad. Physiol Rev 1986, 66(1):71-117.
  • [2]Oktem O, Oktay K: The ovary: anatomy and function throughout human life. Ann N Y Acad Sci 2008, 1127:1-9.
  • [3]te Velde ER, Scheffer GJ, Dorland M, Broekmans FJ, Fauser BC: Developmental and endocrine aspects of normal ovarian aging. Mol Cell Endocrinol 1998, 145(1–2):67-73.
  • [4]Dobashi M, Fujisawa M, Naito I, Yamazaki T, Okada H, Kamidono S: Distribution of type IV collagen subtypes in human testes and their association with spermatogenesis. Fertil Steril 2003, 80(Suppl 2):755-60.
  • [5]Santamaria L, Martinez-Onsurbe P, Paniagua R, Nistal M: Laminin, type IV collagen, and fibronectin in normal and cryptorchid human testes. an immunohistochemical study. Int J Androl 1990, 13(2):135-46.
  • [6]Virtanen I, Lohi J, Tani T, Korhonen M, Burgeson RE, Lehto VP, et al.: Distinct changes in the laminin composition of basement membranes in human seminiferous tubules during development and degeneration. Am J Pathol 1997, 150(4):1421-31.
  • [7]Rodgers RJ, Irving-Rodgers HF, Russell DL: Extracellular matrix of the developing ovarian follicle. Reproduction 2003, 126(4):415-24.
  • [8]Irving-Rodgers HF, Rodgers RJ: Extracellular matrix of the developing ovarian follicle. Semin Reprod Med 2006, 24(4):195-203.
  • [9]Berkholtz CB, Lai BE, Woodruff TK, Shea LD: Distribution of extracellular matrix proteins type I collagen, type IV collagen, fibronectin, and laminin in mouse folliculogenesis. Histochem Cell Biol 2006, 126(5):583-92.
  • [10]Fujiwara H, Honda T, Ueda M, Nakamura K, Yamada S, Maeda M, et al.: Laminin suppresses progesterone production by human luteinizing granulosa cells via interaction with integrin alpha 6 beta 1. J Clin Endocrinol Metab 1997, 82(7):2122-8.
  • [11]Irving-Rodgers HF, Friden BE, Morris SE, Mason HD, Brannstrom M, Sekiguchi K, et al.: Extracellular matrix of the human cyclic corpus luteum. Mol Hum Reprod 2006, 12(9):525-34.
  • [12]Iwahashi M, Muragaki Y, Ooshima A, Nakano R: Type VI collagen expression during growth of human ovarian follicles. Fertil Steril 2000, 74(2):343-7.
  • [13]Lind AK, Weijdegard B, Dahm-Kahler P, Molne J, Sundfeldt K, Brannstrom M: Collagens in the human ovary and their changes in the perifollicular stroma during ovulation. Acta Obstet Gynecol Scand 2006, 85(12):1476-84.
  • [14]Yamada S, Fujiwara H, Honda T, Higuchi T, Nakayama T, Inoue T, et al.: Human granulosa cells express integrin alpha2 and collagen type IV: possible involvement of collagen type IV in granulosa cell luteinization. Mol Hum Reprod 1999, 5(7):607-17.
  • [15]Telfer EE, Zelinski MB: Ovarian follicle culture: advances and challenges for human and nonhuman primates. Fertil Steril 2013, 99(6):1523-33.
  • [16]Konishi I, Fujii S, Okamura H, Parmley T, Mori T: Development of interstitial cells and ovigerous cords in the human fetal ovary: an ultrastructural study. J Anat 1986, 148:121-35.
  • [17]Anderson RA, Fulton N, Cowan G, Coutts S, Saunders PT: Conserved and divergent patterns of expression of DAZL, VASA and OCT4 in the germ cells of the human fetal ovary and testis. BMC Dev Biol 2007, 7:136. BioMed Central Full Text
  • [18]Gkountela S, Li Z, Vincent JJ, Zhang KX, Chen A, Pellegrini M, et al.: The ontogeny of cKIT+ human primordial germ cells proves to be a resource for human germ line reprogramming, imprint erasure and in vitro differentiation. Nat Cell Biol 2013, 15(1):113-22.
  • [19]Yan L, Yang M, Guo H, Yang L, Wu J, Li R, et al.: Single-cell RNA-Seq profiling of human preimplantation embryos and embryonic stem cells. Nat Struct Mol Biol 2013, 20(9):1131-9.
  • [20]Hummitzsch K, Irving-Rodgers HF, Hatzirodos N, Bonner W, Sabatier L, Reinhardt DP, et al.: A new model of development of the Mammalian ovary and follicles. PLoS One 2013, 8(2):e55578.
  • [21]Sawyer HR, Smith P, Heath DA, Juengel JL, Wakefield SJ, McNatty KP: Formation of ovarian follicles during fetal development in sheep. Biol Reprod 2002, 66(4):1134-50.
  • [22]Auersperg N, Wong AS, Choi KC, Kang SK, Leung PC: Ovarian surface epithelium: biology, endocrinology, and pathology. Endocr Rev 2001, 22(2):255-88.
  • [23]Kruk PA, Uitto VJ, Firth JD, Dedhar S, Auersperg N: Reciprocal interactions between human ovarian surface epithelial cells and adjacent extracellular matrix. Exp Cell Res 1994, 215(1):97-108.
  • [24]Brownell AG, Bessem CC, Slavkin HC: Possible functions of mesenchyme cell-derived fibronectin during formation of basal lamina. Proc Natl Acad Sci U S A 1981, 78(6):3711-5.
  • [25]Rodgers HF, Irvine CM, van Wezel IL, Lavranos TC, Luck MR, Sado Y, et al.: Distribution of the alpha1 to alpha6 chains of type IV collagen in bovine follicles. Biol Reprod 1998, 59(6):1334-41.
  • [26]Nakano K, Naito I, Momota R, Sado Y, Hasegawa H, Ninomiya Y, et al.: The distribution of type IV collagen alpha chains in the mouse ovary and its correlation with follicular development. Arch Histol Cytol 2007, 70(4):243-53.
  • [27]Irving-Rodgers HF, Hummitzsch K, Murdiyarso LS, Bonner WM, Sado Y, Ninomiya Y, et al.: Dynamics of extracellular matrix in ovarian follicles and corpora lutea of mice. Cell Tissue Res 2010, 339(3):613-24.
  • [28]Nakahori Y, Hamano K, Iwaya M, Nakagome Y: Sex identification by polymerase chain reaction using X-Y homologous primer. Am J Med Genet 1991, 39(4):472-3.
  • [29]Robinson MD, Smyth GK: Small-sample estimation of negative binomial dispersion, with applications to SAGE data. Biostatistics 2008, 9(2):321-32.
  • [30]Robinson MD, McCarthy DJ, Smyth GK: edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010, 26(1):139-40.
  • [31]Wickham H: ggplot2: elegant graphics for data analysis. Springer, New York; 2009.
  文献评价指标  
  下载次数:56次 浏览次数:87次