期刊论文详细信息
BMC Genomics
Genome-wide identification of vegetative phase transition-associated microRNAs and target predictions using degradome sequencing in Malus hupehensis
Mingyu Han1  Na An1  Yawen Shen1  Songwen Zhang1  Caiping Zhao1  Youmei Li1  Dong Zhang1  Libo Xing1 
[1] College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
关键词: Degradome;    Expression profile;    miRNA targets;    Small RNA;    Malus hupehensis;    Phase change;   
Others  :  1127147
DOI  :  10.1186/1471-2164-15-1125
 received in 2014-06-30, accepted in 2014-12-11,  发布年份 2014
PDF
【 摘 要 】

Background

A long juvenile period between germination and flowering is a common characteristic among fruit trees, including Malus hupehensis (Pamp.) Rehd., which is an apple rootstock widely used in China. microRNAs (miRNAs) play an important role in the regulation of phase transition and reproductive growth processes.

Results

M. hupehensis RNA libraries, one adult and one juvenile phase, were constructed using tree leaves and underwent high-throughput sequencing. We identified 42 known miRNA families and 172 novel miRNAs. We also identified 127 targets for 25 known miRNA families and 168 targets for 35 unique novel miRNAs using degradome sequencing. The identified miRNA targets were categorized into 58 biological processes, and the 123 targets of known miRNAs were associated with phase transition processes. The KEGG analysis revealed that these targets were involved in starch and sucrose metabolism, and plant hormone signal transduction. Expression profiling of miRNAs and their targets indicated multiple regulatory functions in the phase transition. The higher expression level of mdm-miR156 and lower expression level of mdm-miR172 in the juvenile phase leaves implied that these two small miRNAs regulated the phase transition. mdm-miR160 and miRNA393, which regulate genes involved in auxin signal transduction, could also be involved in controlling this process. The identification of known and novel miRNAs and their targets provides new information on this regulatory process in M. hupehensis, which will contribute to the understanding of miRNA functions during growth, phase transition and reproduction in woody fruit trees.

Conclusions

The combination of sRNA and degradome sequencing can be used to better illustrate the profiling of hormone-regulated miRNAs and miRNA targets involving complex regulatory networks, which will contribute to the understanding of miRNA functions during growth, phase transition and reproductive growth in perennial woody fruit trees.

【 授权许可】

   
2014 Xing et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150220023502218.pdf 2890KB PDF download
Figure 11. 40KB Image download
Figure 10. 43KB Image download
Figure 9. 80KB Image download
Figure 8. 83KB Image download
Figure 7. 84KB Image download
Figure 6. 42KB Image download
Figure 5. 58KB Image download
Figure 4. 40KB Image download
Figure 3. 29KB Image download
Figure 2. 16KB Image download
Figure 1. 77KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

Figure 11.

【 参考文献 】
  • [1]Wang J-W, Park MY, Wang L-J, Koo Y, Chen X-Y, Weigel D: Poethig RS: miRNA control of vegetative phase change in trees. PLoS Genet 2011, 7(2):e1002012.
  • [2]Airoldi CA, Bergonzi S, Davies B: Single amino acid change alters the ability to specify male or female organ identity. Proc Natl Acad Sci 2010, 107(44):18898-18902.
  • [3]Cacau FV, Reis GG, Reis MGF, Leite HG, Alves FF, Souza FC: Juvenile eucalypt plant coppicing and sprout management in agroforestry system. Pesquisa Agropecuária Brasileira 2008, 43(11):1457-1465.
  • [4]Li YN: Research of germplasm resources in Malus Mill . Beijing: China Agriculture Press; 2001.
  • [5]Chen XS, Han MY, Su GL, Liu FZ, Guo GN, Jiang YM, Mao ZQ, Peng FT, Su HR: Discussion on today’s world apple industry trends and the suggestions on sustainable and efficient development of apple industry. China J Fruit Sci 2010, 27(04):598-604.
  • [6]Kang G-Z, Xu W, Liu G-Q, Peng X-Q, Guo T-C, Bell J: Comprehensive analysis of the transcription of starch synthesis genes and the transcription factor RSR1 in wheat (Triticum aestivum) endosperm. Genome 2012, 56(2):115-122.
  • [7]Usami T, Horiguchi G, Yano S, Tsukaya H: The more and smaller cells mutants of Arabidopsis thaliana identify novel roles for SQUAMOSA PROMOTER BINDING PROTEIN-LIKE genes in the control of heteroblasty. Development 2009, 136(6):955-964.
  • [8]Shikata M, Koyama T, Mitsuda N, Ohme-Takagi M: Arabidopsis SBP-box genes SPL10, SPL11 and SPL2 control morphological change in association with shoot maturation in the reproductive phase. Physiol 2009, 50(12):2133-2145.
  • [9]Mohamed R, Wang CT, Ma C, Shevchenko O, Dye SJ, Puzey JR, Etherington E, Sheng X, Meilan R, Strauss SH: Populus CEN/TFL1 regulates first onset of flowering, axillary meristem identity and dormancy release in Populus. Plant J 2010, 62(4):674-688.
  • [10]Kotoda N, Wada M: MdTFL1, a TFL1-like gene of apple retards the transition from the vegetative to reproductive phase in transgenic Arabidopsis. Plant Sci 2005, 168(1):95-104.
  • [11]Castillo M-C, Forment J, Gadea J, Carrasco JL, Juarez J, Navarro L, Ancillo G: Identification of transcription factors potentially involved in the juvenile to adult phase transition in Citrus. Ann Bot 2013, 112(7):1371-1381.
  • [12]Wu G, Park MY, Conway SR, Wang J-W, Weigel D, Poethig RS: The Sequential Action of miR156 and miR172 Regulates Developmental Timing in Arabidopsis. Cell 2009, 138(4):750-759.
  • [13]Yamaguchi A, Wu M-F, Yang L, Wu G, Poethig RS, Wagner D: The MicroRNA-Regulated SBP-Box Transcription Factor SPL3 Is a Direct Upstream Activator of LEAFY FRUITFULL and APETALA1. Dev Cell 2009, 17(2):268-278.
  • [14]Fornara F, Coupland G: Plant phase transitions make a SPLash. Cell 2009, 138(4):625-627.
  • [15]Lauter N, Kampani A, Carlson S, Goebel M: Moose SP: microRNA172 down-regulates glossy15 to promote vegetative phase change in maize. Proc Natl Acad Sci U S A 2005, 102(26):9412-9417.
  • [16]Bond BJ: Age-related changes in photosynthesis of woody plants. Trends Plant Sci 2000, 5(8):349-353.
  • [17]Day M, Greenwood M, Diaz-Sala C: Age-and size-related trends in woody plant shoot development: regulatory pathways and evidence for genetic control. Tree Physiol 2002, 22(8):507-513.
  • [18]Chen YT, Shen CH, Lin WD, Chu HA, Huang BL, Kuo CI, Yeh KW, Huang LC, Chang IF: Small RNAs of Sequoia sempervirens during rejuvenation and phase change. Plant Biol 2013, 15(1):27-36.
  • [19]Scarpella E, Barkoulas M, Tsiantis M: Control of leaf and vein development by auxin. Cold Spring Harb Perspect Biol 2010, 2(1):a001511.
  • [20]Curaba J, Singh MB: Bhalla PL: miRNAs in the crosstalk between phytohormone signalling pathways. J Exp Bot 2014, 65(6):1425-1438.
  • [21]Yu S, Galvão VC, Zhang Y-C, Horrer D, Zhang T-Q, Hao Y-H, Feng Y-Q, Wang S, Schmid M, Wang J-W: Gibberellin regulates the Arabidopsis floral transition through miR156-targeted SQUAMOSA PROMOTER BINDING–LIKE transcription factors. Plant Cell Online 2012, 24(8):3320-3332.
  • [22]Xia R, Zhu H: An Y-q, Beers EP, Liu Z: Apple miRNAs and tasiRNAs with novel regulatory networks. Genome Biol 2012, 13(6):R47. BioMed Central Full Text
  • [23]Hafner M, Landgraf P, Ludwig J, Rice A, Ojo T, Lin C, Holoch D, Lim C, Tuschl T: Identification of microRNAs and other small regulatory RNAs using cDNA library sequencing. Methods 2008, 44(1):3-12.
  • [24]Addo-Quaye C, Miller W, Axtell MJ: CleaveLand: a pipeline for using degradome data to find cleaved small RNA targets. Bioinformatics 2009, 25(1):130-131.
  • [25]Griffiths-Jones S, Saini HK, van Dongen S: Enright AJ: miRBase: tools for microRNA genomics. Nucleic Acids Res 2008, 36(suppl 1):D154-D158.
  • [26]German MA, Pillay M, Jeong D-H, Hetawal A, Luo S, Janardhanan P, Kannan V, Rymarquis LA, Nobuta K, German R: Global identification of microRNA–target RNA pairs by parallel analysis of RNA ends. Nat Biotechnol 2008, 26(8):941-946.
  • [27]Du Z, Zhou X, Ling Y, Zhang Z: Su Z: agriGO: a GO analysis toolkit for the agricultural community. Nucleic Acids Res 2010, 38(suppl 2):W64-W70.
  • [28]Gómez-Cadenas A, Mehouachi J, Tadeo FR, Primo-Millo E, Talon M: Hormonal regulation of fruitlet abscission induced by carbohydrate shortage in citrus. Planta 2000, 210(4):636-643.
  • [29]Zimmerman RH, Hackett WP, Pharis RP: Hormonal aspects of phase change and precocious flowering. In Hormonal Regulation of Development III. 1st edition. Edited by Pharis RP. Berlin Heidelberg: Springer; 1985:79-115. Volume 11.
  • [30]Fahlgren N, Jogdeo S, Kasschau KD, Sullivan CM, Chapman EJ, Laubinger S, Smith LM, Dasenko M, Givan SA, Weigel D: MicroRNA gene evolution in Arabidopsis lyrata and Arabidopsis thaliana. Plant Cell Online 2010, 22(4):1074-1089.
  • [31]Srivastava S, Srivastava AK, Suprasanna P, D’Souza S: Identification and profiling of arsenic stress-induced microRNAs in Brassica juncea. J Exp Bot 2013, 64(1):303-315.
  • [32]Wang K, Zhu X, Zhong L, Chen R: Small RNA in rice genome. Sci China C Life Sci 2002, 45(5):497-503.
  • [33]Li R, Yu C, Li Y, Lam T-W, Yiu S-M, Kristiansen K, Wang J: SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics 2009, 25(15):1966-1967.
  • [34]Ulger S, Sonmez S, Karkacier M, Ertoy N, Akdesir O, Aksu M: Determination of endogenous hormones, sugars and mineral nutrition levels during the induction, initiation and differentiation stage and their effects on flower formation in olive. Plant Growth Regul 2004, 42(1):89-95.
  • [35]Hackett WP: Juvenility, maturation, and rejuvenation in woody plants. Horticultural Reviews 1985, 7:109-155.
  • [36]Zhu H, Xia R, Zhao B: An Y-q, Dardick CD, Callahan AM, Liu Z: Unique expression, processing regulation, and regulatory network of peach (Prunus persica) miRNAs. BMC Plant Biol 2012, 12(1):149. BioMed Central Full Text
  • [37]Meyers BC, Axtell MJ, Bartel B, Bartel DP, Baulcombe D, Bowman JL, Cao X, Carrington JC, Chen X, Green PJ: Criteria for annotation of plant MicroRNAs. Plant Cell Online 2008, 20(12):3186-3190.
  • [38]Wu G, Poethig RS: Temporal regulation of shoot development in Arabidopsis thaliana by miR156 and its target SPL3. Development 2006, 133(18):3539-3547.
  • [39]Gandikota M, Birkenbihl RP, Höhmann S, Cardon GH, Saedler H, Huijser P: The miRNA156/157 recognition element in the 3′ UTR of the Arabidopsis SBP box gene SPL3 prevents early flowering by translational inhibition in seedlings. Plant J 2007, 49(4):683-693.
  • [40]Wang J-W, Schwab R, Czech B, Mica E, Weigel D: Dual effects of miR156-targeted SPL genes and CYP78A5/KLUH on plastochron length and organ size in Arabidopsis thaliana. Plant Cell Online 2008, 20(5):1231-1243.
  • [41]Schwarz S, Grande AV, Bujdoso N, Saedler H, Huijser P: The microRNA regulated SBP-box genes SPL9 and SPL15 control shoot maturation in Arabidopsis. Plant Mol Biol 2008, 67(1–2):183-195.
  • [42]Schmid M, Davison TS, Henz SR, Pape UJ, Demar M, Vingron M, Schölkopf B, Weigel D, Lohmann JU: A gene expression map of Arabidopsis thaliana development. Nat Genet 2005, 37(5):501-506.
  • [43]Franco-Zorrilla JM, Valli A, Todesco M, Mateos I, Puga MI, Rubio-Somoza I, Leyva A, Weigel D, García JA, Paz-Ares J: Target mimicry provides a new mechanism for regulation of microRNA activity. Nat Genet 2007, 39(8):1033-1037.
  • [44]Schwab R, Palatnik JF, Riester M, Schommer C, Schmid M, Weigel D: Specific effects of microRNAs on the plant transcriptome. Dev Cell 2005, 8(4):517-527.
  • [45]Gou J-Y, Felippes FF, Liu C-J, Weigel D, Wang J-W: Negative regulation of anthocyanin biosynthesis in Arabidopsis by a miR156-targeted SPL transcription factor. Plant Cell Online 2011, 23(4):1512-1522.
  • [46]Yant L, Mathieu J, Dinh TT, Ott F, Lanz C, Wollmann H, Chen X, Schmid M: Orchestration of the floral transition and floral development in Arabidopsis by the bifunctional transcription factor APETALA2. Plant Cell Online 2010, 22(7):2156-2170.
  • [47]Yanik H, Turktas M, Dundar E, Hernandez P, Dorado G, Unver T: Genome-wide identification of alternate bearing-associated microRNAs (miRNAs) in olive (Olea europaea L.). BMC Plant Biol 2013, 13(1):10. BioMed Central Full Text
  • [48]Zhu Q-H, Upadhyaya NM, Gubler F, Helliwell CA: Over-expression of miR172 causes loss of spikelet determinacy and floral organ abnormalities in rice (Oryza sativa). BMC Plant Biol 2009, 9(1):149. BioMed Central Full Text
  • [49]Allen E, Xie Z, Gustafson AM: Carrington JC: microRNA-Directed Phasing during Trans−Acting siRNA Biogenesis in Plants. Cell 2005, 121(2):207-221.
  • [50]Scarpella E, Marcos D, Friml J, Berleth T: Control of leaf vascular patterning by polar auxin transport. Genes Dev 2006, 20(8):1015-1027.
  • [51]Friml J, Vieten A, Sauer M, Weijers D, Schwarz H, Hamann T, Offringa R, Jürgens G: Efflux-dependent auxin gradients establish the apical–basal axis of Arabidopsis. Nature 2003, 426(6963):147-153.
  • [52]Okushima Y, Fukaki H, Onoda M, Theologis A, Tasaka M: ARF7 and ARF19 regulate lateral root formation via direct activation of LBD/ASL genes in Arabidopsis. Plant Cell Online 2007, 19(1):118-130.
  • [53]Okushima Y, Overvoorde PJ, Arima K, Alonso JM, Chan A, Chang C, Ecker JR, Hughes B, Lui A, Nguyen D: Functional genomic analysis of the AUXIN RESPONSE FACTOR gene family members in Arabidopsis thaliana: unique and overlapping functions of ARF7 and ARF19. Plant Cell Online 2005, 17(2):444-463.
  • [54]Overvoorde PJ, Okushima Y, Alonso JM, Chan A, Chang C, Ecker JR, Hughes B, Liu A, Onodera C, Quach H: Functional genomic analysis of the AUXIN/INDOLE-3-ACETIC ACID gene family members in Arabidopsis thaliana. Plant Cell Online 2005, 17(12):3282-3300.
  • [55]Mallory AC, Bartel DP, Bartel B: MicroRNA-directed regulation of Arabidopsis AUXIN RESPONSE FACTOR17 is essential for proper development and modulates expression of early auxin response genes. Plant Cell Online 2005, 17(5):1360-1375.
  • [56]Xing H, Pudake RN, Guo G, Xing G, Hu Z, Zhang Y, Sun Q, Ni Z: Genome-wide identification and expression profiling of auxin response factor (ARF) gene family in maize. BMC Genomics 2011, 12(1):178. BioMed Central Full Text
  • [57]Zhang L, Chia J-M, Kumari S, Stein JC, Liu Z, Narechania A, Maher CA, Guill K, McMullen MD, Ware D: A genome-wide characterization of microRNA genes in maize. PLoS Genet 2009, 5(11):e1000716.
  • [58]Si-Ammour A, Windels D, Arn-Bouldoires E, Kutter C, Ailhas J, Meins F: Vazquez F: miR393 and secondary siRNAs regulate expression of the TIR1/AFB2 auxin receptor clade and auxin-related development of Arabidopsis leaves. Plant Physiol 2011, 157(2):683-691.
  • [59]Vanneste S, Friml J: Auxin: a trigger for change in plant development. Cell 2009, 136(6):1005-1016.
  • [60]Chen Z-H, Bao M-L, Sun Y-Z, Yang Y-J, Xu X-H, Wang J-H, Han N, Bian H-W, Zhu M-Y: Regulation of auxin response by miR393-targeted transport inhibitor response protein 1 is involved in normal development in Arabidopsis. Plant Mol Biol 2011, 77(6):619-629.
  • [61]Dugas DV, Bartel B: Sucrose induction of Arabidopsis miR398 represses two Cu/Zn superoxide dismutases. Plant Mol Biol 2008, 67(4):403-417.
  • [62]Yang X, Wang L, Yuan D, Lindsey K, Zhang X: Small RNA and degradome sequencing reveal complex miRNA regulation during cotton somatic embryogenesis. J Exp Bot 2013, 64(6):1521-1536.
  文献评价指标  
  下载次数:56次 浏览次数:14次